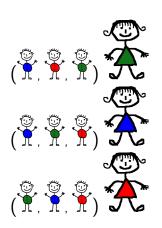
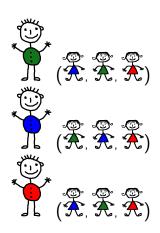
Dynamisches Matching mit Präferenzen

Martin Hoefer

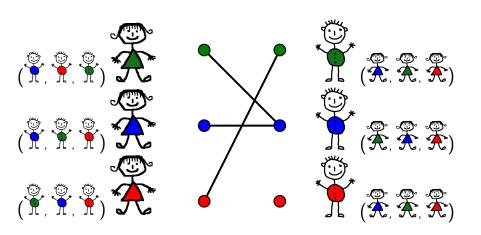
mhoefer@cs.uni-frankfurt.de

Wie findet man eine stabile Beziehung?

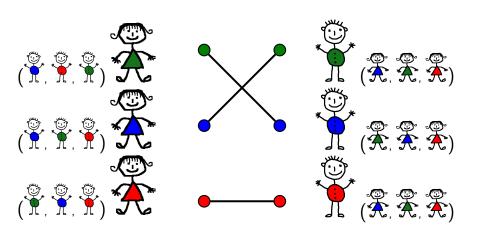




Jede Person hat eine Präferenzliste.

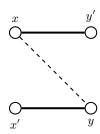


Jede Person hat eine Präferenzliste.

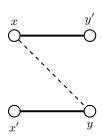


Jede Person hat eine Präferenzliste.

- {x, y} ist Blocking Pair gdw x und y sich beide ihren momentanen Partnern vorziehen.
- ullet Matching M ist ein stabiles Matching gdw es kein Blocking Pair erlaubt.



- {x, y} ist Blocking Pair gdw x und y sich beide ihren momentanen Partnern vorziehen
- Matching M ist ein stabiles Matching gdw es kein Blocking Pair erlaubt.



Einige Resultate und Erweiterungen:

- Ein stabiles Matching existiert immer, und es gibt einen effizienten
 Algorithmus zur Berechnung. [Gale, Shapley 1962]
- Viele weitere Resultate seit den 60ern: "Mitbewohnerproblem", Ties, Unvollständige Listen, Multi-Matching, Netzwerkdesign...

Anwendungen

Ärzte/Krankenhäuser

Uni-Zulassung

Arbeitsmarkt

Handel

P2P Netzwerke

etc.

Anwendungen

Ärzte/Krankenhäuser

Uni-Zulassung

Arbeitsmarkt

Handel

P2P Netzwerke

etc.

Heute:

Was passiert, wenn ...

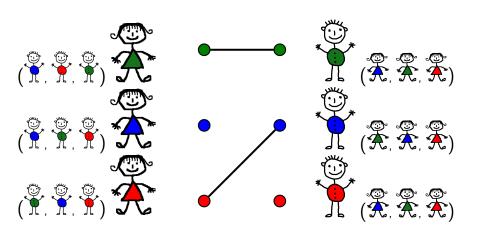
- ... das Matching nicht zentral vorgegeben wird, und...
- ... Teilnehmer nur beschränkte Information über mögliche Partner haben?

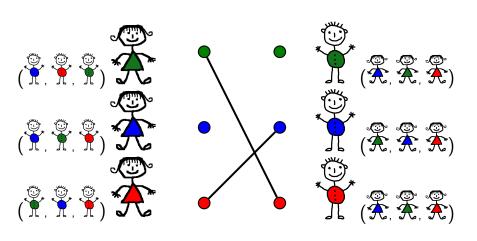
Können sie ein stabiles Matching erreichen? Wie lange dauert das?

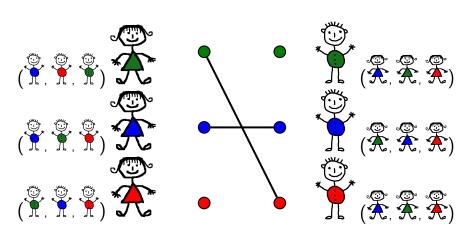
1 Dynamiken und Lokalität

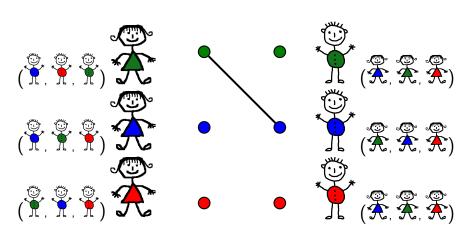
2 Lokal Stabiles Matching

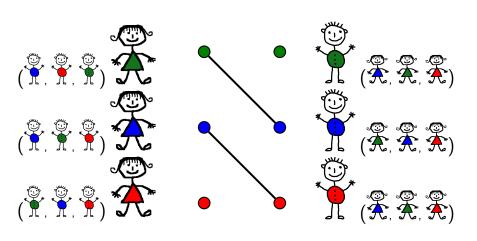
Gewichtetes Matching

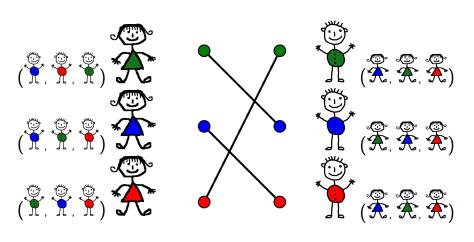


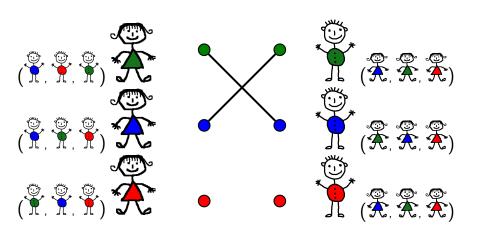


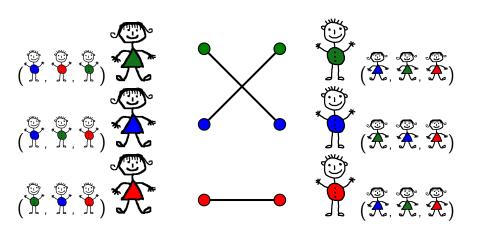












Resultate

• Blocking-Pair-Dynamik kann kreisen.

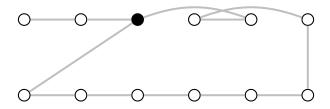
[Knuth 1976]

 Von jedem initialen Matching gibt es eine Folge von Auflösungen, die in einem stabilen Matching endet. Die Folge hat polynomielle Länge.

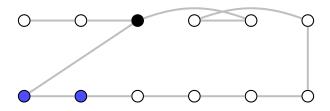
[Roth, Vande Vate 1990]

- Wenn das Blocking Pair in jedem Schritt uniform zufällig gewählt wird, konvergieren wir mit Wahrscheinlichkeit 1 zum stabilen Matching.
- Zufällige Dynamiken können mit hoher Wahrscheinlichkeit exponentielle
 Zeit benötigen, um ein stabiles Matching zu erreichen.

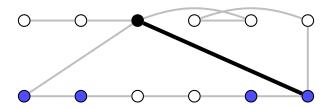
[Ackermann, Goldberg, Mirrokni, Röglin, Vöcking 2011]



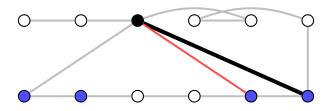
- ullet Teilnehmer sind Knoten in einem statischen (sozialen) Netzwerk N mit ungerichteten Links L.
- Informationsstruktur mit Netzwerk und Triadic Closure:



- Teilnehmer sind Knoten in einem statischen (sozialen) Netzwerk N mit ungerichteten Links L.
- Informationsstruktur mit Netzwerk und Triadic Closure:
- Jede/r Mann (Frau) kann zu jeder/m Frau (Mann) in der 2-Hop-Nachbarschaft in N verbinden.

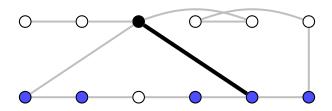


- Teilnehmer sind Knoten in einem statischen (sozialen) Netzwerk N mit ungerichteten Links L.
- Informationsstruktur mit Netzwerk und Triadic Closure:
- Jede/r Mann (Frau) kann zu jeder/m Frau (Mann) in der 2-Hop-Nachbarschaft in N verbinden.
- Paar $\{x,y\} \Rightarrow x$ (y) kann sich zu einem direkten Nachbar von y (x) in N verbinden.



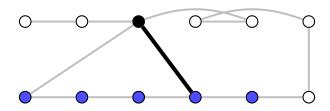
- In einem Matching M ist $\{x,y\}$ erreichbar wenn x und y Hop-Distanz 2 im Graphen $G=(V,L\cup M)$ haben.
- $\{x,y\}$ ist ein lokales Blocking Pair $\Leftrightarrow \{x,y\}$ Blocking Pair und erreichbar.
- Matching M ist lokal stabiles Matching

 ⇔ M erlaubt kein lokales Blocking Pair.

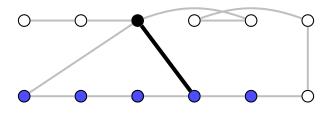


- In einem Matching M ist $\{x,y\}$ erreichbar wenn x und y Hop-Distanz 2 im Graphen $G=(V,L\cup M)$ haben.
- $\{x,y\}$ ist ein lokales Blocking Pair $\Leftrightarrow \{x,y\}$ Blocking Pair und erreichbar.
- Matching M ist lokal stabiles Matching

 ⇔ M erlaubt kein lokales Blocking Pair.



- In einem Matching M ist $\{x,y\}$ erreichbar wenn x und y Hop-Distanz 2 im Graphen $G=(V,L\cup M)$ haben.
- $\{x,y\}$ ist ein lokales Blocking Pair $\Leftrightarrow \{x,y\}$ Blocking Pair und erreichbar.
- Matching M ist lokal stabiles Matching $\Leftrightarrow M$ erlaubt kein lokales Blocking Pair.



Was passiert, wenn Teilnehmer iterativ lokale Blocking Pairs auflösen?

Dynamiken und Lokalität

2 Lokal Stabiles Matching

Gewichtetes Matching

Erreichbarkeit für lokal stabile Matchings mit beliebigen strikten Präferenzlisten

	Stabiles Matching	Lokal Stabiles Matching
Erreichbarkeit	Ja [RVV'90]	NP-hart

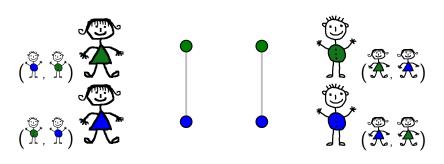
Erreichbarkeit für lokal stabile Matchings mit beliebigen strikten Präferenzlisten

	Stabiles Matching	Lokal Stabiles Matching
Erreichbarkeit	Ja [RVV'90]	NP-hart
Kürzeste Sequenz	$O(n^2)$ [RVV'90]	$2^{\Omega(n)}$

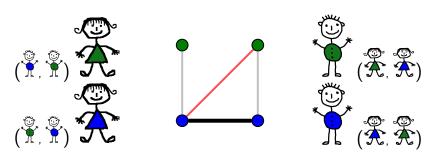
Erreichbarkeit für lokal stabile Matchings mit beliebigen strikten Präferenzlisten

	Stabiles Matching	Lokal Stabiles Matching
Erreichbarkeit	Ja [RVV'90]	NP-hart (PSPACE-hart?)
Kürzeste Sequenz	$O(n^2)$ [RVV'90]	$2^{\Omega(n)}$

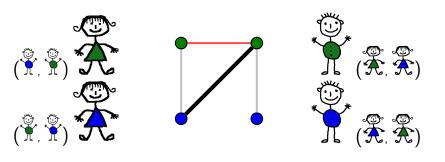
Es können nicht genug Paare erzeugt werden:



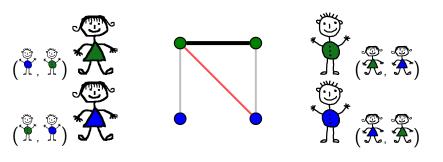
Es können nicht genug Paare erzeugt werden:



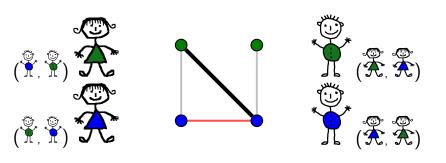
Es können nicht genug Paare erzeugt werden:



Es können nicht genug Paare erzeugt werden:



Es können nicht genug Paare erzeugt werden:



Memory

Konvergieren Dynamiken, wenn sich Teilnehmer an (einige) vorherige Partner erinnern?

Memory

Konvergieren Dynamiken, wenn sich Teilnehmer an (einige) vorherige Partner erinnern?

Zufalls-Memory

 Jeder Teilnehmer erinnert sich in jeder Runde uniform zufällig an einen Ex-Partner. Dieses Paar wird in der nächsten Runde erreichbar. Konvergieren Dynamiken, wenn sich Teilnehmer an (einige) vorherige Partner erinnern?

Zufalls-Memory

 Jeder Teilnehmer erinnert sich in jeder Runde uniform zufällig an einen Ex-Partner. Dieses Paar wird in der nächsten Runde erreichbar.

Deterministisches Memory

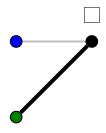
- Jeder Teilnehmer erinnert sich deterministisch an einen Ex-Partner.
- Qualitäts-Memory: Erinnert sich an den besten Ex-Partner.
- Zeit-Memory: Erinnert sich an den letzten Ex-Partner.

Erreichbarkeit für lokal stabile Matchings mit beliebigen strikten Präferenzlisten

	Stabiles Matching	Lokal Stabiles Matching
Erreichbarkeit	Ja [RVV'90]	NP-hart
Kürzeste Sequenz	$O(n^2)$ [RVV'90]	$2^{\Omega(n)}$
Erreichbk. Qualität	Ja, $O(n^2)$	NP-hart, wenn eine Seite keine internen Links

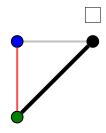
Qualitäts-Memory kann man leicht austricksen!

Zu einer Härte-Instanz für leeres Anfangsmatching fügen wir separate Gadgets zu ausgewählten Knoten hinzu, die zu Fixierung führen.



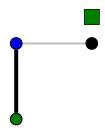
Qualitäts-Memory kann man leicht austricksen!

Zu einer Härte-Instanz für leeres Anfangsmatching fügen wir separate Gadgets zu ausgewählten Knoten hinzu, die zu Fixierung führen.



Qualitäts-Memory kann man leicht austricksen!

Zu einer Härte-Instanz für leeres Anfangsmatching fügen wir separate Gadgets zu ausgewählten Knoten hinzu, die zu Fixierung führen.

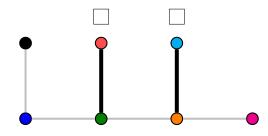


Erreichbarkeit für lokal stabile Matchings mit beliebigen strikten Präferenzlisten

	Stabiles Matching	Lokal Stabiles Matching
Erreichbarkeit	Ja [RVV'90]	NP-hart
Kürzeste Sequenz	$O(n^2)$ [RVV'90]	$2^{\Omega(n)}$
Erreichbk. Qualität	Ja, $O(n^2)$	NP-hart, wenn eine Seite keine internen Links
Erreichbk. Zeit	Ja, $O(n^2)$	Ja, $O(n^3)$, wenn eine Seite keine internen Links

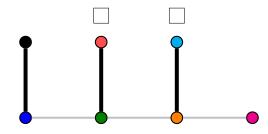
Konvergenz bei voller Information in zwei Phasen:

- Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



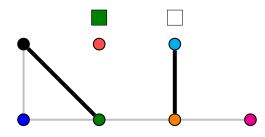
Konvergenz bei voller Information in zwei Phasen:

- Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



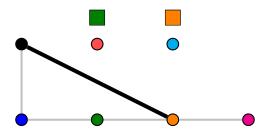
Konvergenz bei voller Information in zwei Phasen:

- 4 Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



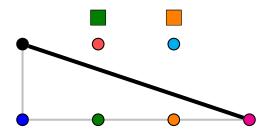
Konvergenz bei voller Information in zwei Phasen:

- 4 Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



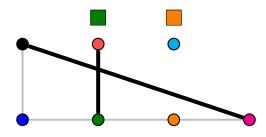
Konvergenz bei voller Information in zwei Phasen:

- 4 Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



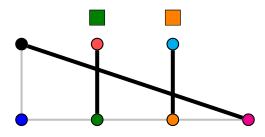
Konvergenz bei voller Information in zwei Phasen:

- 4 Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



Konvergenz bei voller Information in zwei Phasen:

- 4 Verheiratete Männer lösen Blocking Pairs auf (männl. Präferenzanstieg)
- Unverheiratete M\u00e4nner l\u00f6sen Blocking Pairs auf (weibl. Pr\u00e4ferenzanstieg)



Erreichbarkeit für lokal stabile Matchings mit beliebigen strikten Präferenzlisten

	Stabiles Matching	Lokal Stabiles Matching
Erreichbarkeit	Ja [RVV'90]	NP-hart
Kürzeste Sequenz	$O(n^2)$ [RVV'90]	$2^{\Omega(n)}$
Erreichbk. Qualität	Ja, $O(n^2)$	NP-hart, wenn eine Seite keine internen Links
Erreichbk. Zeit	Ja, $O(n^2)$	Ja, $O(n^3)$, wenn eine Seite keine internen Links
Erreichbk. Zufall	m. Wkeit 1	m. Wkeit 1

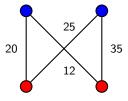
Dynamiken und Lokalität

2 Lokal Stabiles Matching

Gewichtetes Matching

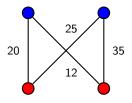
Gewichtetes Matching

Jede mögliche Kante $e = \{x, y\}$ liefert Profit $b_e > 0$.



Gewichtetes Matching

Jede mögliche Kante $e = \{x, y\}$ liefert Profit $b_e > 0$.



- Dynamik azyklisch der sortierte Vektor von Kantenprofiten steigt lexikographisch an.
- ullet Beste-Antwort-Dynamik löst immer das Blocking Pair mit größtem Profit auf. Diese Dynamik konvergiert in Zeit O(n) zu einem stabilen Matching. [Ackermann, Goldberg, Mirrokni, Röglin, Vöcking 2011]

Parameter:

• Es gibt eine Teilmenge E von möglichen Kanten, sei m = |E|.

	Min-Folge	Zufäll. Dynamik	
Beste-Antwort			
	$2^{\Omega(n)}$	$2^{\Omega(n)}$	
Beliebig			
	$O(n \cdot m^2)$	$2^{\Omega(n)}$	

Parameter:

- Es gibt eine Teilmenge E von möglichen Kanten, sei m = |E|.
- Jeder Agent kann bis zu $k \ge 1$ Kanten erstellen.
- Jeder Agent hat Sichtweite $\ell \geq 2$ im Graphen $G = (V, L \cup M)$.

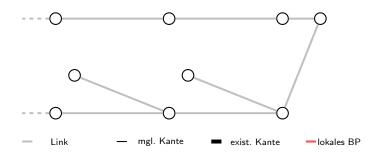
	Min-Folge	Zufäll. Dynamik	
Beste-Antwort			
$k=1, \ell=2$	$2^{\Omega(n)}$	$2^{\Omega(n)}$	
Beliebig			
$k=1$, $\ell=2$	$O(n \cdot m^2)$	$2^{\Omega(n)}$	
$k>1$ or $\ell>2$	$2^{\Omega(n)}$	$2^{\Omega(n)}$	

Parameter:

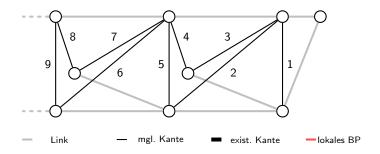
- Es gibt eine Teilmenge E von möglichen Kanten, sei m = |E|.
- Jeder Agent kann bis zu $k \ge 1$ Kanten erstellen.
- Jeder Agent hat Sichtweite $\ell \geq 2$ im Graphen $G = (V, L \cup M)$.

	Min-Folge	Zufäll. Dynamik	m. Zufalls-Memory
Beste-Antwort			
$k=1$, $\ell=2$	$2^{\Omega(n)}$	$2^{\Omega(n)}$	$O(n \cdot m^2)$
Beliebig			
$k=1, \ell=2$	$O(n \cdot m^2)$	$2^{\Omega(n)}$	$O(n \cdot m^2)$
$k>1$ or $\ell>2$	$2^{\Omega(n)}$	$2^{\Omega(n)}$	$O(n \cdot k \cdot m^2)$

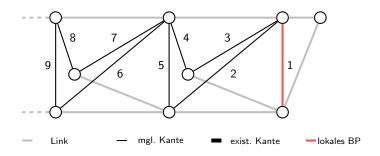
Zufällige Dynamik mit Zufalls-Memory konvergiert in polynomieller Zeit.



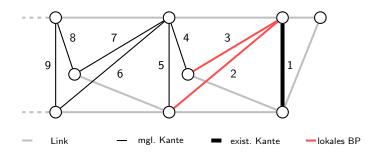
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



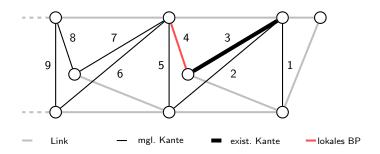
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



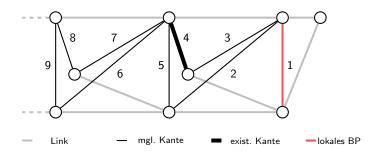
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



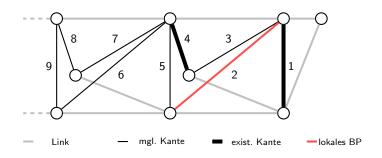
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



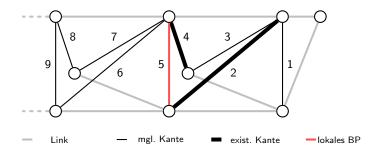
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



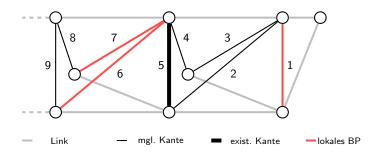
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



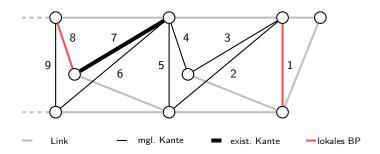
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



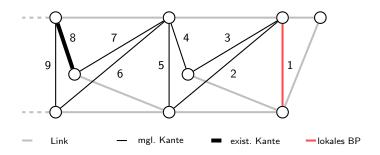
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



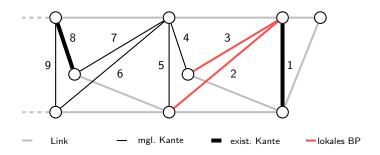
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



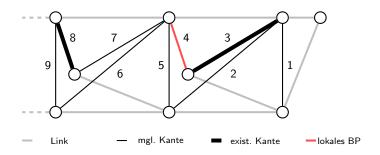
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



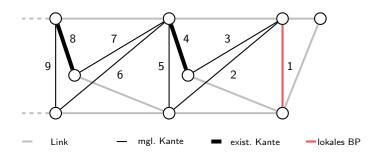
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



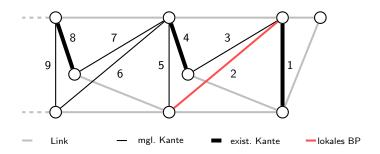
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



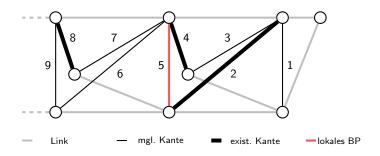
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



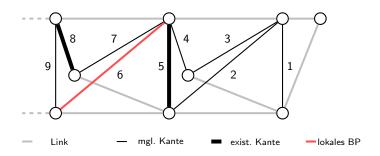
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



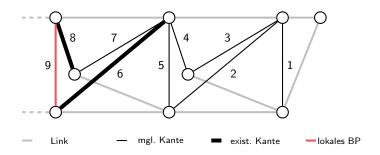
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



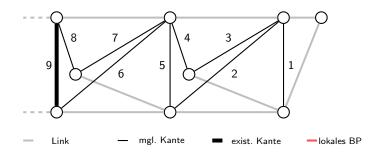
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



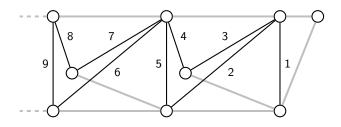
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



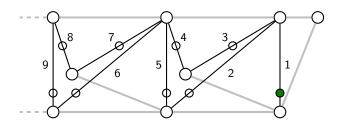
- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$



- ullet Die eindeutige Beste-Antwort-Sequenz hat Länge $2^{\Omega(n)}$.
- Die zufällige Dynamik wählt eine beste Antwort mit Wkeit mind. 1/2, dadurch erwartete Anzahl von 1.5 Erzeugungen bis eine Kante zum nächsten Block vordringt.
- \bullet Bei b Blöcken ergibt sich eine Konvergenzzeit von mind. $1.5^b=2^{\Omega(n)}.$

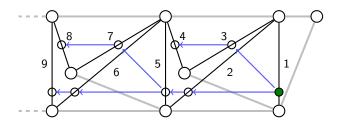


 ${\sf Graph \ der \ Kantenbewegungen}$



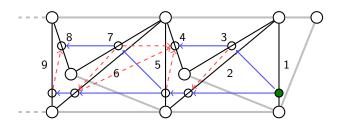
Graph der Kantenbewegungen

- Einen Knoten für jede mögliche Kante
- \bullet Startpunkt e: Lokales Blocking Pair für $M=\emptyset$



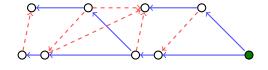
Graph der Kantenbewegungen

- Einen Knoten für jede mögliche Kante
- ullet Startpunkt e: Lokales Blocking Pair für $M=\emptyset$
- ullet Bewegungskante (e,e'): e' wird lokales BP wenn e existiert



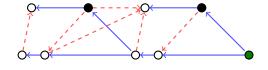
Graph der Kantenbewegungen

- Einen Knoten für jede mögliche Kante
- ullet Startpunkt e: Lokales Blocking Pair für $M=\emptyset$
- ullet Bewegungskante (e,e'): e' wird lokales BP wenn e existiert
- Dominierungskante (e, e'): e' kann kein BP sein wenn e existiert.



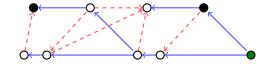
Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



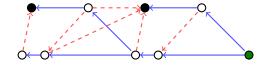
Existierende Kanten sind Knotenmarkierungen

- lacktriangle Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



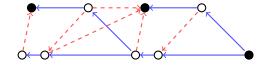
Existierende Kanten sind Knotenmarkierungen

- $\bullet \ \ \mbox{Verbessere existierende Markierungen ohne neue zu erstellen. (in } O(nm))$
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



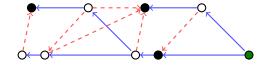
Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



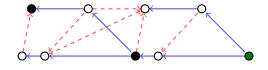
Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{3}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



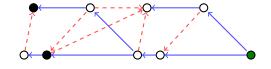
Existierende Kanten sind Knotenmarkierungen

- lacktriangle Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{3}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



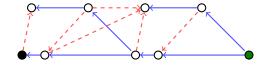
Existierende Kanten sind Knotenmarkierungen

- lacktriangle Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



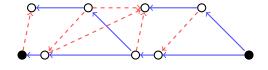
Existierende Kanten sind Knotenmarkierungen

- lacktriangle Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



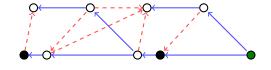
Existierende Kanten sind Knotenmarkierungen

- lacktriangle Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



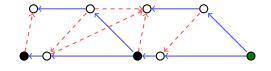
Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



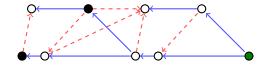
Existierende Kanten sind Knotenmarkierungen

- lacktriangle Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- ullet Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



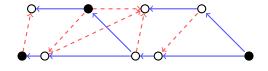
Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



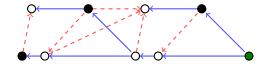
Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))



Existierende Kanten sind Knotenmarkierungen

- Verbessere existierende Markierungen ohne neue zu erstellen. (in O(nm))
- **2** Bewege Markierung zu einer dominiernden und weiter bei 1. (in $O(nm^2)$)
- $oldsymbol{\circ}$ Erstelle neue stabile Markierungen über die Startpunkte. (in O(nm))

Zusammenfassung

Lokal Stabiles Matching

- Matching mit unvollständiger und dynamischer Information
- Exploration und Optimierung in Netzwerken

Strikte Präferenzen

- Erreichbarkeit ist NP-hart
- Bessere Resultate für (Zufalls-)Memory

Gewichtetes Matching

- Konvergenz in Poly-Zeit mit globaler Information
- Exponentielle Zeit mit lokalen Dynamiken
- Exponentieller Speed-Up mit Zufalls-Memory

Vielen Dank für die Aufmerksamkeit!

