Algorithmic Game Theory - Fair Division Winter 2022/23

Lectures 24-25: Fair division of indivisible goods

Lecturers: Prof. Dr. Martin Hoefer, Dr. Giovanna Varricchio Scribes: Dr. Giovanna Varricchio

Summary: We introduce the fair division paradigms to the indivisible setting. Here, multiple items have
to be assigned. Differently from Cake-cutting, items are assumed to be indivisible, that is, they can be
assigned to a unique agent. In these lectures, we introduce relaxations of classical fairness notions and
explore their computation. We also consider efficiency in conjunction with fairness.

Resources:

e Fair Division of Indivisible Goods: A Survey G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, A. A.
Voudouris https://arxiv.org/pdf/2202.07551.pdf

e Trends in computational social choice. Chapter 12 — Approximation Algorithms and Hardness Results
for Fair Division with Indivisible Goods.

e Tutorial on Recent Advances in Fair Resource Allocation, Rupert Freeman and Nisarg Shah https:
//www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf

e Further readings in the references.

1 Setting

We are given a set of m indivisible resources, a.k.a. itemsor goods, G = {g1,...,9m},and aset N = {1,... n}
of n agents.

Definition 1 (Allocation). An allocation A is a partition of G into disjoint sets, each of them assigned to
a unique agent. For each i € N, we denote by A; C G the bundle (that is, the set of items) received by agent
i in the allocation A.

Usually, the allocation is also asked to be complete, that is, U;A; = G.

Agents’ valuations. Agents have preferences over possible bundles they might receive. Preferences are
usually quantifiable and are expressed by means of valuations functions.

Definition 2 (Valuations). Given an agent i, the valuation function of agent i is a mapping v; : 29 — Rxg.

We will mostly focus on valuation functions that are additive and the claims we provide hold only for additive
valuations unless specified otherwise.

Definition 3 (Additive Valuations). A wvaluation function v : 29 — Rsq is said to be additive if for each
X g ga U(X) = ZgGX U({g})

For our convenience, in what follows we will write v(g) instead of v({g}).

Example 1. Let us give an example of additive valuations depicted in Table 1 where we have three agents
and five items.
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g1 g2 gs g4 95

Agent 1 @ 3 @
5
3

Agent 2 7 5
Agent 3 20 @

2 6
(i

Table 1: An example of additive valuations. Line i corresponds to agent ¢. Circles correspond to the allocated
items in a possible (complete) allocation.

2 Fairness Criteria
In this section, we reintroduce some fairness criteria from cake-cutting setting. We will see that the solutions

we defined are no longer guaranteed to exist. Therefore, we introduce some relaxations to circumvent this
problem.

2.1 Definitions

'Ui(g)'

n

In this setting, the proportional share of agent i is given by PS; =

Definition 4 (Proportionality). An allocation A is said to be proportional (PROP) if each agent receives
at least her proportional share, that is, Vi € N it holds

vi(4;) > PS; .
Also redefining envy-freeness is straightforward.
Definition 5 (Envy-freeness). An allocation A is said to be envy-free (EF) if for each i,5 € N it holds
vi(Ai) > vi(4y) .

Observer that also for indivisible items EF = PROP and there might exist allocations which are PROP
but not EF.
Unfortunately, EF and PROP allocations may not exist.

Example 2. Let us consider two agents and one valuable (positively valued by both agents) item, no matter
who receives the item the resulting allocation is neither EF nor PROP.

Such impossibility holds even when m > n. See for example Table 1.

Indeed, this instance does not admit any envy-free or proportional allocations. Consider agent 3. She must
get at least {g1} or {g2,93,94,95}. The latter case, leaves one item to be allocated to either agent 1 or 2
which cannot lead to a proportional allocation. On the other hand, if agent 3 gets g1, agent 1 must receive
at least three of the remaining four goods and 2 must get at least two, which is not possible.

Due to this impossibility result and for the sake of fairness, relaxed versions of EF and PROP have been
introduced and studied.

Definition 6 (Proportionality up to one Good). An allocation A is said to be proportional up to one good
(PROP1) if, for each i € N, either A; = G or there exists g € G\ A;

Notice that v;(A; U g) = v;(A;) + v;(g) when valuations are additive.

Definition 7 (Envy-freeness up to one Good). An allocation A is said to be envy-free up to one good (EF1)
if, for each i,j € N, either A; =0 or there exists g € A; such that

vi(Ai) > vi(A; \ {g}) -
Example 3. The allocation depicted in Table 1 is an EF1 allocation.
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REMARK! Clearly, EF = EF1 and PROP = PROP1.
Proposition 1. Any EF1 allocation is also PROP1.

Proof. Let us show the statement for agent 7. Since ¢ is EF1, for each j € N, with A; # (), there exists
g; € A; such that

vi(Ai) > vi(A;\ {g;}) -
Summing up for all i € A/, and by additivity, we get
nevi(Ag) > vi(A) + Y (viA4;) = v5(g5)) = 0i(G) = > _vilg;)

J#i J#i

and therefore v;(A4;) > PS; — M If every A; = () then A; = G making the allocation proportional

for i. Otherwise, by selecting g* = arg maxgeg\ 4, vi(g), we have v;(4;) > PS; — W > PS; —vi(g"),
and hence agent 7 is PROP1.
Applying the same argument to all the agents the thesis follows. O

Proposition 2. There exist allocations that are PROP1 but not EF1.

Proof. Exercise. O

3 Existence and Computation of EF1 and PROP1 allocations

Here we discuss about the computation of EF1 (and hence PROP1) allocations for additive and monotone
valuation functions.

3.1 Round-Robin procedure

We show that, thanks to a Round-Robin procedure, EF1 allocations always exist for additive valuations and
can be computed in poly-time.

Let us first consider general sequential algorithms. Roughly speaking, in a sequential allocation of items, we
create a vector (sequence) s = (s1, ..., S;,) where the component s, corresponds to the agent who will select
her most preferred item at the h-th round of the procedure. The vector s is also known as picking sequence.

Sequential allocation algorithm. A sequential allocation algorithm takes as input a picking sequence
s, the goods G, the agents A, and their valuations. The algorithm, then, proceeds as follows:
o A+ (0,...,0)
e Forh=1,....m
— 14 Sp,

— g* < argmaxyeg vi(g)
— A+ A;U{g}, G+ G\ {g}

The Round-Robin procedure is the sequential allocation algorithm executed with a picking sequence of length
m in the form s = (1,...,n,1,...,n,1,...), for a fixed ordering 1,...,n of the agents.

Example 4. The allocation in Tab. 1 is the result of the Round-Robin for the ordering 1,2, 3.

Theorem 3. The Round-Robin procedure outputs an EF1 allocation whenever agents’ valuations are additive.
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Proof. Let us split the algorithm into rounds: we call Round & the k-th occurrence of 1,...,n in the picking
sequence s = (1,...,n,1,...,n,1,...). Therefore, in a Round k, the agents receive a k-th item, if possible.
Notice that in the last round it is possible that not all the agents have the opportunity to select an item.
We start by noticing that the first agent in the ordering (which is 1) is EF since the item she gets in a Round
k is at least as good as the item selected by any other agent in the same round.

Let us consider agent ¢ and remove the first ¢ — 1 agents in the sequence s (let’s call this new sequence (7))
and remove the items these agents selected in the first round. By running the Round-Robin with s(i) on
the refined set of goods 4 is the first agent in the sequence. Notice that s(i) is a Round-Robin sequence for
the ordering 7,7+ 1,...n,1,...7 — 1, and hence we get an EF allocation for i. By reassigning the items we
removed to their owner we get an EF1 allocation. Moreover, this allocation coincides with the outcome of
the original Round-Robin with the sequence s, and therefore the thesis follows. O

3.2 Envy-graph and envy-cycle elimination

Is it possible to achieve EF1 for more general valuation functions?

Definition 8 (Monotone Valuations). A valuation function v : 29 — Rsq is said to be monotone if for each
YCXCG, vY)<uvX).

For our purposes we need to introduce the following instrument:

Definition 9 (Envy-Graph). Given a (partial) allocation A, the envy graph for the allocation A is defined
as follows:

e cach agent i is represented by a node, for simplicity we call such node i;
o there exists a directed edge (i,7) if and only if v;(A;) > v;(4s).

Note that the directed edge represents the envy of i towards j, therefore, any ¢ which is a source in the
envy-graph is not envied by any other agent.

The envy-graph is an extremely useful tool to reduce envy in an allocation. In fact, if there exists a cycle
we can reduce the envy by trading bundles along the cycle. Formally, let us assume that an allocation A
presents a cycle C' = iy, 19, ...,1k, 41 involving k (w.l.o.g.) distinct agents. Trading the bundles along the
cycles means we create a new allocation A" where A} = A;1; for each i = 1,...k — 1 and Aj, = A; while
all the other bundles remains the same. By trading bundles along a cycle we reduce the number of edges
in the envy-graph without creating new ones. More importantly, trading along an envy-cycle preserves the
EF1 property, as formalized in the following:

Lemma 4. Given an EF1 allocation A, under monotone valuations assumption, if the envy-graph has a
cycle C the allocation A’ obtained from A by trading the cycle C is also EF1.

Proof. From the perspective of agents who are not in the cycle the allocation is not changing (we are only
changing the owners of the bundles).

For the agents in the cycle, the value of their bundle increases and it is higher than the value attributed to
the bundle they previously had. Therefore, in the new allocation, any agent ¢ in the cycle does not envy her
previous bundle while the previous edges (¢, j) can only disappear. (Show a picture). O

The envy-cycle elimination protocol. The envy-cycle elimination starts from an empty allocation
(which is clearly EF1). At each round, one available item g is allocated to some agent ¢ who is not envied by
any other (which is a source node in the envy-graph), this maintains the EF1 since ¢ was note envied before
inserting g. At the end of the round, to guarantee the existence of source nodes, if a cycle appears in the
envy-graph bundles along the cycle are traded and therefore at the end of each round there is no cycle in the
envy-graph. Since EF1 is preserved (by Lemma 4) at each step of the procedure, the final allocation is EF1.
Formally, the envy-cycle elimination can be summarized as follows:
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o A+ (0,...,0)
e Sort goods from g; up to g,
e Forh=1,....m

— 4 < a sink node in the envy-graph

= A < A U{gn}, G+ G\ {gn}
— update the envy-graph, if a cycle appears trade the goods along the cycle

Notice that multiple cycles may appear but any cycle appearing has to pass through agent . By eliminating
one of these cycles no other cycle appears during a single FOR loop.

Theorem 5 (Lipton et al. 2004). If agents’ valuations are monotone the envy-cycle elimination outputs an
EF1 allocation.

Proof. The proof proceeds by induction as explained above. At each step the EF1 property is satisfied and
therefore it is satisfied by the final allocation. O

What’s the complexity of the envy-cycle elimination? This procedure guarantees the existence of an EF1
allocation for monotone valuations; however, it is not clear the time complexity of the procedure. This is
strictly related to the representation and the knowledge we have of the valuation functions. At every step,
the envy graph has to be created and therefore a quadratic number (actually, linear since only one agent
changes her bundle and therefore any other agent has only to evaluate the new bundle) of comparisons have
to be performed. The evaluation cannot be considered an atomic operation unless we have an oracle. Let
us denote by T™* the time complexity for determining the value of any bundle by any agent, the complexity
of the envy-cycle elimination is O(poly(n) - T*). Anyway, the envy-cycle elimination is considered to be an
efficient algorithm since T* is an intrinsic value depending on the given valuations.

4 EF1 and efficiency

Let’s turn our attention again to additive valuations. Since EF1 allocations do always exist, we may try to
ask for further properties for such a solution. A compelling notion is the one of efficiency, usually defined as
Pareto optimality. Roughly speaking, we do not want to create waste while achieving EF1.

We have seen that maximizing welfare functions as the utilitarian or the Nash social welfare leads to Pareto
optimal allocations in the cake-cutting setting. It remains true also for indivisible goods (it is sufficient to
apply the very same arguments). Interestingly, it turned out that any allocation maximizing Nash social
welfare is also particularly fair.

REMARK! There are scenarios where the maximum Nash social welfare is 0. Consider for example the
case of two agents and an item. In this case, we at first maximize the number of agents having positive value
for their bundle, then maximize the Nash welfare among these agents.

Theorem 6. Let A be a Nash optimal allocation, then A is also EF1.

Proof. Let be A a maximum Nash welfare allocation.

Let us assume NSW(A) # 0, which means, every agent has a positive value for her bundle, and therefore
no bundle is empty. It is possible to show that the statement holds true even if NSW(A) = 0 with a careful
adaptation of the proof.

We want to show that for every i, € N, there exists g € A; such that v;(A4;) > v;(4;) — vi(g).

If v;(A;) = 0 the claim trivially follows since i does not envy j.

Otherwise, since A is Nash optimal, by moving any item g € A; to A; the Nash social welfare cannot improve.
Hence,
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vi(A;) 'Uj(Aj) > (vi(Ay) +vi(9)) - (’Uj(Aj) - Uj(g)) And
v;(9) - (vi(A:i) +vi(g)) = vi(g) - v;(4;)

showing that, for each g € A;

vi(A;) + vilg) > ”j% vi(4;) . (1)

Let us select g* = argmingea; ,;(g)>0 ZJT(;?;, notice that ¢* is well defined; in fact, there must exist at least

<

one positively valued good in j’s bundle according to i’s valuations because v;(A;) > 0. By definition of g*,
it holds

2 gea; vi(9) < vi(4y)
vi(g*) T Dgea, vilg) T vi(4))

and hence, by inverting terms, ZV-(A:-) ey
This inequality together with Eq. (1) show that ¢* € A; is such that v;(4;) > v;(A4,) — v;(¢g*), concluding
the proof. O

In conclusion, for additive valuations there exists an allocation that is simultaneously EF1 and Pareto optimal.
Proposition 7. Under additive valuations, an allocation simultaneously EF1 and PO always exists.

This is only an existential result, computing a maximum NSW allocation is in general hard, even for two
agents with identical valuations.

So far we discussed the existence of EF1 and hence PROP1 allocations. Are there any other meaningful
relaxations for EF and PROP?

5 Beyond EF1 allocations — Envy-freeness up to any good

EF1 represents in first approximation a good relaxation of the EF fairness concept, which is not always
guaranteed to exist. We know that EF = EF1 and a natural question is whether there is a good trade-off
between these two notions.

Let us start with an example showing that an EF1 allocation might be quite unfair.

Example 5. Consider a fair division instance with two agents, three goods, and additive valuations depicted
in Table 2.

Let us consider the allocation A1 = {g1, 95} and Az = {g2}. This allocation is EF1 as agent 2 is allowed to
remove g1 to eliminate the envy. However, according to agent 2, va(A1) = 13 and vo(As) = 3 which is a
quite large gap between the two bundles.

g1 g2 g3

Agent 1 10 2 1
Agent2 10 3 2

Table 2: Valuations in Example 5.

Roughly speaking, in the definition of EF1, allowing to remove some good could be too “generous”, what
about the removal of any?
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Definition 10 (Envy-freeness up to Any Good). An allocation A is said to be envy-free up to any good
(EFX) if, for each i,j € N, either A; =0 or for every g € Aj such that v;(g) > 0 it holds

vi(As) > vi(A;\ {g}) -

Example 6. Consider the allocation in Table 1. Such allocation is EF1 but not EFX.
Consider for the same instance the allocation: Ay = {g4,95}, A = {92,935}, A3 = {q1}, this is an EFX
allocation.

The following implications easily follow.
Proposition 8. EF — EFX — EF1

It is also easy to see that backward directions do not hold.

5.1 On the EFX existence

Unfortunately, the existence is unknown! It is known only for special cases like two or three agents or
identical valuations.

Two agents. Here we show the existence of EFX allocations for two agents.
Theorem 9. EFX allocations always exists for n = 2 and can be efficiently computed.

Proof. We show the existence by providing an algorithm that is a discrete version of the CUTANDCHOOSE
protocol.

e Agent 1 computes a partition (A1, A2) such that vy (A1) > v1(42) and v1 (A1 \ {g}) < v1(A2) for each
g € A such that vi(g) > 0;

e Agent 2 selects the most favorite bundle for her;

e Agent 1 gets the remaining bundle.

Such an allocation is EFX. Indeed, agent 2 does not envy agent 1. Agent 1, no matter which bundle receives,
is EFX by the conditions on the two bundles. We only need to clarify how to compute such a partition.
To compute the partition (A;, Ay) we proceed as follows!:

e Sort goods in a non-increasing order of values according to 1, that is, v1(g1) > v1(g2) > ... > v1(gm)
o (A1, A2) < (0,0)
e allocate items in the ordering g¢; ... g, to the bundle A;, i = 1,2, of minimum value for agent 1.

Assume without loss of generality that vi(A;) > v1(As), otherwise we change names to the bundles. We
have that v1(A41 \ {g9}) < vi1(Ag) for each g € Ay, such that v;(g) > 0, must hold. Notice that this means
that for 1, receiving As would make her EFX. Hence, it is sufficient to show that vy (41 \ {g*}) < v1(A;) for
g* € Aj such that v1(g*) > 0 and g¢* is the least valued good in A;. This holds true since before inserting
g* in A; the value of A; was smaller or equal to the value of Ay, according to 1. Furthermore, g* is the
smallest positively valued good in Aj, therefore the thesis follows. O

INotice we will use the same idea in the next paragraph for identical valuations.
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Identical additive valuations. Here, we assume agents have identical additive valuations, that is, v; = v
for each i € N where v is additive.
We start by showing that EFX allocations always exist in this setting.

Theorem 10. If agents have identical valuations, any mazimum NSW allocation is also EFX.

Proof. Assume A is Nash optimal. We denote by v the valuation function of the agents. Therefore, moving
any positively valued g from any A; to any A; cannot strictly improve the Nash social welfare. Formally,

v(Ai) - v(4;) 2 (v(Ai) +v(g)) - (v(45) —v(g)) &
v(g) - (v(A:) +0(g)) = v(g) - v;(4;)
Being v(g) > 0, we have for each ¢,j and g € A;, v(A4;) > v;(A;) — v(g) and the thesis follows.
Notice we assumed that the NSW is not 0. If so, it means that at least one agent has no item in her bundle
and therefore there are not enough items for the agents. In this case, we assume that the Nash welfare first
maximizes the number of agents with a positive value for their bundle and then the Nash welfare among

that agents. In this case, a maximum Nash welfare allocation assigns one of the m < n items to one agent,
and hence it is EFX. O

Unfortunately, it is hard to compute such an allocation, even for n = 2.
Theorem 11. [t is NP-hard to compute a maximum NSW even under identical valuations, even if n = 2.

Proof. Reduction from PARTITION.

PARTITION

Input: A set X = {x1,...,2¢} of positive values
Problem: Does there exist a partition of X, i.e. (S, X\ S),s.t. 3o co® =2, cx\g27?

Reduction:

We create a far division instance with two agents and identical valuations v. We set (with an abuse of
notation) G = X and v(z) = .

It is sufficient to notice that, for identical valuation, the more balanced the values of the two bundles the
higher the Nash welfare. Therefore, denoted by z = 22:1 x;, a partition exists if and only if the maximum
Nash welfare is of z/2. O

Despite the quite negative result, it is still possible to compute an EFX allocation with good welfare guar-
antees.
We next present a greedy algorithm to compute an EFX allocation.

Greedy algorithm for identical valuations:
o A« (@,,@)
e sort items gy, ..., g, in a non-increasing order, that is, v(g1) > v(g2) > ... > v(gm)
e Forh=1,....m

— i« argmin;epn v(A;) (break ties arbitrarily)
— A+ AU {gn}

Theorem 12 (Barman et al. 2018). The greedy algorithm for identical valuations computes an EFX alloca-
tion which is an 1.061 approzimation to the Nash optimum.
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Proof. We only prove EFX. In particular, at every iteration EFX is satisfied.

At the beginning, the allocation is empty, and therefore, EFX.

Consider a general iteration where good g is allocated, let’s say, to agent i. Before allocating g no one envies
i since she has the minimum valued bundle and the allocation is EFX. For every j, k # i, after allocating g,
the allocations remains EFX if i is not considered. Let us now consider ¢ and observe that no j EFX-envies
i since ¢ is the minimum item in the new bundle (the algo introduces items in a non-increasing order) and
before introducing g so one was envying i. On the other hand, also ¢ does not EFX-envy any j, since her
bundle has increased. O

6 Maximin share

We now present a relaxation of PROP.

Motivated by the question of what can we guarantee in the worst case to the agents, the rationale of this
concept is to think of a generalization of the well-known CUTANDCHOOSE protocol to multiple agents as
follows: suppose that agent i is asked to partition the goods into n bundles and then the rest of the agents
choose a bundle before 7. In the worst case, agent ¢ will be left with her least valuable bundle. Hence, a
risk-averse agent would choose a partition that maximizes the minimum value of a bundle in the partition.
This value is called the maximin share of agent i, and for n = 2, it is precisely what he could guarantee to
himself in the discrete form of the CUTANDCHOOSE protocol, by being the cutter. The objective then is to
find an allocation where every agent receives at least his maximin share.

Let us denote by II,,(G) the set of all possible allocations of goods in G among n agents.

Definition 11 (Maximin share). The mazimin share of agent i is given by

i = ti(n,v;,G) = max minwv;(A4;).
pi = pui( g9) o] (A;)

An allocation is MMS if every agent receives at least her maximin share.

Example 7. Consider the instance in Table 1. The maximin shares of the agents are the following: pu; = 6,
w2 =17, and ps = 6. The allocation Ay = {ga, 95}, A2 = {92,93}, As = {¢91} is MMS.

Properties.

e PS; > pu;. In fact, PS; is the average value of n bundles for i while y; is the minimum value of n
bundles, for some specific allocation. Therefore, the inequality holds true.

e Monotonicity. u;(n —1,v;,G\ {g}) > pi(n,v;,G) for any g € G.
Consider a partition of G that attains the maximin share of 7. Let A be this partition and assume
g € A;. Consider the remaining partition (As,..., A,) and allocate goods in A; \ {g} arbitrarily,
obtaining a partition (Ba, ..., By). This is a (n — 1)-partition of G\ {g} where the value of agent ¢ for
any bundle is at least p;. Monotonicity follows.

6.1 Existence and computation

Let us start by noticing that by definition, an MMS allocation always exists under identical valuations (the
allocation which has minimum value y; is an MMS allocation).

Although the maximin share is a relaxation of the proportional share, it is still not guaranteed to exist.
However, a good portion of work in fair division has focused on good approximations. An allocation A
is an « approximation of MMS if for each i, v;(A;) > a - p;. The best-known approximation so far is of
3/4+1/(12n).

We next present a simple algorithm achieving an %—approximation.
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An %-approximation for MMS
e For each i € N compute PS; for the instance N, G, {v; }ienr
e while there exist i and g such that v;(g) > 5¢

— assign g to ¢
- NN\ {i}, GG\ {g}

— update the proportional share of each remaining agent in the new instance NV, G, {v; bienr
e Run the Round-Robin on the remaining instance N, G, {v; }ienr
Theorem 13 (Amanatidis et al. 2017). The algorithm outputs an %—approa:imatz'on for MMS.

Proof. Let A be the outcome of the approximation algorithm.

Consider an iteration k of the while loop. At this point, the algorithm has allocated k& — 1 items and k — 1
agents have been removed. Let N and G be the initial set of goods and agents, and let N/ and G’ be the
current set of goods and agents. Let ¢ be the agent receiving the item g in the current iteration, agent ¢ has
a proportional share of PS] (the proportional share for A7 and G’).

Applying monotonicity k& — 1 times, we have p;(n — k + 1,v;,G’) > pi(n,v;, G); moreover, PS, > u;(n — k +
1,v;,G"). Therefore i gets at least half of her true maximin share.

Let us now consider the agents involved in the Round-Robin. Let N, G"” {v;}ien be the instance at the
beginning of the Round-Robin. Notice that for no agent ¢ € N7 there exists a good g € G” such that
vi(g) > PS! /2. Moreover, by monotonicity, we have p;(JN"'|,v;,G") > p;(n,v;,G) for each i.

The Round-Robin algorithm provides a EF1 and hence PROP1 allocation for the instance N, G" {v; }ien-
Therefore, for any i € N/ there exists g € G” \ A; such that

vi(Ai) > PS{ —vi(g) = PS{'/2 > pus(IN"'|,v1,G") /2 > pi(n, v:, ) /2,

and the thesis follows. O

7 Conclusive remarks

In these lectures, we only considered goods. It might be the case that items are chores, i.e. they have a
negative value, or a mixture of goods and chores. Interestingly, in case of chores, the obtained results may
change. As an example, the envy-cycle elimination no longer preserves the EFX or the EF1 property.
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