Algorithmic Game Theory

Winter Term 2022/2023

Prof. Dr. Martin Hoefer, Dr. Giovanna Varricchio Conrad Schecker

Institute for Computer Science Algorithms and Complexity

Assignment 1

Issued: Oct 25, 2022

Due: Nov 01, 2022, **10:00h**

General Information on Submissions

Every submission for this course...

- ... must consist of a single PDF file.
- ... must be uploaded **before Tuesday**, **10:00h** one week after the assignment was issued. You should have received a personal upload URL after signing up for the exercises.
- ... can be composed in English or German.
- ... will be graded based on correctness, completeness, comprehensibility and conciseness. In particular, all answers require an explanation, unless stated otherwise.

Exercise 1.1. (2 + 2 Points)

]	Ε		F			G			Н	
		8			7			2			6
A	_		4			0			4		
	7		4			9			4		
		4			8			1			5
В											
	6		3			7			2		
		9			2			5			2
С											
	6		6			8			3		
		4			6			4			9
D											
	8		5			7			9		

Consider the 2-player game given by the matrix above. Calculate all

- a) dominant strategies of the players,
- b) pure Nash equilibria.

Exercise 1.2. (3 + 3 + 3 Points)

A strategy $s_i \in S_i$ of player i is called *strictly dominated* by strategy $s_i' \in S_i$, if s_i' is always strictly better then s_i , i.e. for all s_{-i} we have $c_i(s_i', s_{-i}) < c_i(s_i, s_{-i})$.

		W		X			Y			\mathbf{Z}	
		5		Ę	5			2			4
A	2		0			C			_		
	3		9			6			5		
		2			5			3			6
В											
	6		5			9			9		
		1		9)			5			6
С											
	4		7			2			4		
		1		7	7			7			2
D											
	4		4			8			8		

- a) Iteratively, eliminate all strictly dominated strategies in the cost matrix given above. Do this until there are no strictly dominated strategies left. Depict your cost matrix after each step.
- b) Calculate a mixed Nash equilibrium for the reduced cost matrix.
- c) Prove the following statement: In all 2-player normal form games, there is a one-to-one correspondence between mixed Nash equilibria in the original and the reduced game, when applying the reduction procedure described in a).

Exercise 1.3.
$$(2 + 2 + 2 \text{ Points})$$

We generalize Sperner's Lemma to squares in the following way: We consider a square S that is subdivided into smaller squares by a grid of lines parallel to the edges of the original square. The vertices of the subdivision are the points of intersection of the lines. A *Sperner coloring* of S is a coloring of vertices that fulfills the following properties:

- The four outer corners of S are colored green, blue, orange, purple in clockwise order.
- Every vertex on the boundary (i.e. the outer side) of S is colored with one of the two colors of the endpoints of the corresponding outer line.
- Vertices in the interior of S are colored arbitrarily in one of the four colors.

An edge between a green and a blue vertex is called a *door*. Doors on the boundary of S are called *entrances*. Show the following properties for a Sperner coloring of a square S:

- a) There is an odd number of entrances.
- b) There is at least one small square with at least 3 different colors.
- c) There is an odd number of small squares, with at least 3 different colors and exactly one door.