Laufzeitanalyse demogr.

```
int i = 10;
for (int j = 0; j <= n; j = j+i) {
    i = i+10;
    print("Gauss!");
}
print("Gesundheit!");</pre>
```

Die Laufzeit in Abhängigkeit von *n* ist

- (1) $\Theta(\log^* n)$
- (2) $\Theta(\log n)$
- (3) $\Theta(\sqrt{n})$
- \bullet (4) $\Theta(n)$
- (5) $\Theta(n \log n)$

Laufzeitanalyse demogr.

```
int i = 10;
for (int j = 0; j <= n; j = j+i) {
    i = i+10;
    print("Gauss!");
}
print("Gesundheit!");</pre>
```

Die Laufzeit in Abhängigkeit von n ist

- (1) $\Theta(\log^* n)$
- (2) $\Theta(\log n)$
- (3) $\Theta(\sqrt{n})$
- \bullet (4) $\Theta(n)$
- (5) $\Theta(n \log n)$

Auflösung:

Laufzeitanalyse demogr.

```
int i = 10;
for (int j = 0; j <= n; j = j+i) {
    i = i+10;
    print("Gauss!");
}
print("Gesundheit!");</pre>
```

Die Laufzeit in Abhängigkeit von n ist

- (1) $\Theta(\log^* n)$
- (2) $\Theta(\log n)$
- (3) $\Theta(\sqrt{n})$
- \bullet (4) $\Theta(n)$
- (5) $\Theta(n \log n)$

Auflösung: (3) $\Theta(\sqrt{n})$

Laufzeitanalyse (2) demogr.

Die Laufzeit in Abhängigkeit von n ist

- (1) $\Theta(\sqrt{n})$
- (2) $\Theta(\log n)$
- (3) $\Theta(\log \log n)$
- (4) $\Theta(\log \log \log n)$
- (5) $\Theta(\log^* n)$

Laufzeitanalyse (2) demogr.

Die Laufzeit in Abhängigkeit von n ist

- (1) $\Theta(\sqrt{n})$
- (2) $\Theta(\log n)$
- (3) $\Theta(\log \log n)$
- (4) $\Theta(\log \log \log n)$
- (5) $\Theta(\log^* n)$

Auflösung:

Laufzeitanalyse (2) demogr.

Die Laufzeit in Abhängigkeit von n ist

- (1) $\Theta(\sqrt{n})$
- (2) $\Theta(\log n)$
- (3) $\Theta(\log \log n)$
- (4) $\Theta(\log \log \log n)$
- (5) $\Theta(\log^* n)$

Auflösung: (3) $\Theta(\log \log n)$

Minimieren maximaler Verzögerung demogr.

Gegeben seien drei Aufgaben A_i mit Werten (Frist_i, Dauer_i): $A_1 = (5, 4), A_2 = (6, 8), A_3 = (2, 1).$

Welche maximale Verzögerung ergibt sich bei optimaler Anordnung?

Minimieren maximaler Verzögerung demogr.

Gegeben seien drei Aufgaben A_i mit Werten (Frist_i, Dauer_i): $A_1 = (5, 4), A_2 = (6, 8), A_3 = (2, 1).$

Welche maximale Verzögerung ergibt sich bei optimaler Anordnung?

Auflösung:

Minimieren maximaler Verzögerung demogr.

Gegeben seien drei Aufgaben A_i mit Werten (Frist_i, Dauer_i): $A_1 = (5, 4), A_2 = (6, 8), A_3 = (2, 1).$

Welche maximale Verzögerung ergibt sich bei optimaler Anordnung?

Auflösung: Verzögerung 7 bei Anordnung A_3 A_1 A_2