Asymptotische Notation (1) multiple choice

Es seien $f(n) = (\log_2 n)^{\sqrt{\log_2 n}}$ und $g(n) = (\sqrt{n})^{\log_2 \log_2 n}$. Was gilt dann?

- (1) f(n) = O(g(n))
- (1) f(n) = O(g(n))• (2) f(n) = o(g(n))
- (3) $f(n) = \Omega(g(n))$
- (4) $f(n) = \omega(g(n))$
- (5) $f(n) = \Theta(g(n))$

Asymptotische Notation (1) multiple choice

Es seien $f(n) = (\log_2 n)^{\sqrt{\log_2 n}}$ und $g(n) = (\sqrt{n})^{\log_2 \log_2 n}$. Was gilt dann?

- (1) f(n) = O(g(n))• (2) f(n) = o(g(n))
- (3) $f(n) = \Omega(g(n))$
- (4) $f(n) = \omega(g(n))$
- (5) $f(n) = \Theta(g(n))$

Auflösung:

Asymptotische Notation (1) multiple choice

Es seien $f(n) = (\log_2 n)^{\sqrt{\log_2 n}}$ und $g(n) = (\sqrt{n})^{\log_2 \log_2 n}$. Was gilt dann?

- (1) f(n) = O(g(n))
- (2) f(n) = o(g(n))
- (3) $f(n) = \Omega(g(n))$
- (4) $f(n) = \omega(g(n))$
- (5) $f(n) = \Theta(g(n))$

Auflösung: (1) & (2)

Fake News? multiple choice

Neues von Professor Pinocchio:

- (1) In jedem Graphen G mit n Knoten und m Kanten läuft Tiefensuche in Zeit $\Theta(\max(n, m))$.
- (2) Die Ende-Nummerierung entspricht einer Postorder-Traversierung des Baums der Tiefensuche.
- (3) In jedem gerichteten Graphen *G* ist die Anzahl der Rückwärtskanten einer Tiefensuche genau die Anzahl der Kreise von *G*.
- (4) In jedem gerichteten Graphen G ist die Anzahl der Rückwärtskanten einer Tiefensuche mindestens so groß wie die Anzahl der Zusammenhangskomponenten von G.

Was stimmt?

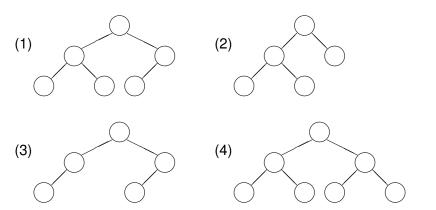
Fake News? multiple choice

Neues von Professor Pinocchio:

- (1) In jedem Graphen G mit n Knoten und m Kanten läuft Tiefensuche in Zeit $\Theta(\max(n, m))$.
- (2) Die Ende-Nummerierung entspricht einer Postorder-Traversierung des Baums der Tiefensuche.
- (3) In jedem gerichteten Graphen *G* ist die Anzahl der Rückwärtskanten einer Tiefensuche genau die Anzahl der Kreise von *G*.
- (4) In jedem gerichteten Graphen *G* ist die Anzahl der Rückwärtskanten einer Tiefensuche mindestens so groß wie die Anzahl der Zusammenhangskomponenten von *G*.

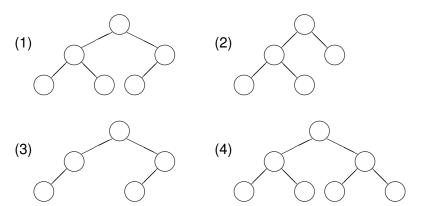
Was stimmt? Auflösung:

Fake News? multiple choice


Neues von Professor Pinocchio:

- (1) In jedem Graphen G mit n Knoten und m Kanten läuft Tiefensuche in Zeit $\Theta(\max(n, m))$.
- (2) Die Ende-Nummerierung entspricht einer Postorder-Traversierung des Baums der Tiefensuche.
- (3) In jedem gerichteten Graphen G ist die Anzahl der Rückwärtskanten einer Tiefensuche genau die Anzahl der Kreise von G.
- (4) In jedem gerichteten Graphen *G* ist die Anzahl der Rückwärtskanten einer Tiefensuche mindestens so groß wie die Anzahl der Zusammenhangskomponenten von *G*.

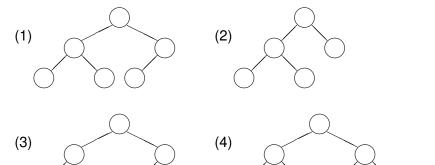
Was stimmt?


Auflösung: (1), (2)

Heapstruktur multiple choice

Welcher Baum hat keine Heapstruktur?

Heapstruktur multiple choice



Welcher Baum hat keine Heapstruktur?

Auflösung:

Heapstruktur multiple choice

Welcher Baum hat keine Heapstruktur?

Auflösung: (3)

