Diskrete Modellierung

Wintersemester 2020/2021

Prof. Dr. Martin Hoefer Marco Schmalhofer, Daniel Schmand

Institut für Informatik Algorithmen und Komplexität

Übungsblatt 10

Aufgabe 10.1 Moore- und Mealy-Automaten

(10 + 12 = 22 Punkte)

Abgabe: 04.02.2021, 8:00

Ausgabe: 28.01.2021

Wir betrachten in dieser Aufgabe die Kodierung von Binärnachrichten auf einer getakteten Leitung. An der Leitung können die Spannungspegel (L)ow und (H)igh anliegen. Eine 1 wird durch einen Pegelwechsel $(L \to H)$ oder $H \to L)$ kodiert, eine 0 durch das Gleichbleiben des Pegels $(L \to L)$ oder $H \to H$. Am Anfang liegt stets Low auf der Leitung.

Formal entspricht diese Kodierung einer Funktion $C: \{0,1\}^+ \to \{L,H\}^+$ mit $w = w_1 w_2 \dots w_n \mapsto x_1 x_2 \dots x_n$, wobei

$$x_i = \begin{cases} x_{i-1} & \text{falls } w_i = 0, \\ \overline{x}_{i-1} & \text{falls } w_i = 1 \end{cases}$$

für alle $i \in \{1, ..., n\}$ und $x_0 = L$ gilt. Dabei ist die Negation $\overline{L} = H$ und $\overline{H} = L$. Beispielsweise gilt C(10001) = HHHHL und C(0111001) = LHLHHHL.

Das Dekodieren einer Nachricht geschieht durch die Umkehrfunktion von C.

Wir möchten die Kodierung/Dekodierung mithilfe von Automaten modellieren, die zu jedem gelesenen Wort eine Ausgabe produzieren. In der technischen Informatik werden hierfür Moore- und Mealy-Automaten verwendet. Details hierzu finden Sie in den Definitionen 7.11 und 7.13 im Skript.

- a) Konstruieren Sie einen Moore-Automaten $A_1 = (\Sigma_1, Q_1, \delta_1, q_{01}, \lambda_1, \Omega_1)$ mit dem Eingabealphabet $\Sigma_1 = \{0, 1\}$ und dem Ausgabealphabet $\Omega_1 = \{L, H\}$, der bei Eingabe $w \in \Sigma_1^+$ das kodierte Wort C(w) ausgibt.
- b) Konstruieren Sie einen Mealy-Automaten $A_2 = (\Sigma_2, Q_2, \delta_2, q_{02}, \lambda_2, \Omega_2)$ mit dem Eingabealphabet $\Sigma_2 = \{L, H\}$ und dem Ausgabealphabet $\Omega_2 = \{0, 1\}$, der bei Eingabe $w \in \Sigma_2^+$ das dekodierte Wort $C^{-1}(w)$ ausgibt.

Geben Sie eine kurze Erklärung Ihrer Modellierung an. Es genügt, wenn Sie die beiden Automaten grafisch darstellen.

Aufgabe 10.2 Automatminimierung

$$(16 + 9 + 6 = 31 \text{ Punkte})$$

Der DFA $A = (\Sigma, Q, \delta, q_0, F)$ mit $\Sigma = \{a, b\}, Q = \{1, 2, 3, 4, 5, 6, 7\}, q_0 = 1$ und $F = \{2, 4, 7\}$ sei durch die Grafik rechts gegeben.

- a) Minimieren Sie A, d. h. bestimmen Sie den Äquivalenzklassenautomaten A'. Verwenden Sie dazu den Tabellen-Algorithmus aus der Vorlesung (Abschnitt 7.3.4 im Skript). Geben Sie in der Tabelle für jedes Paar inäquivalenter Zustände die Menge M_i an, in die das Paar aufgenommen wird.
- b) Bestimmen Sie die Äquivalenzklassen von \equiv_A^0 , \equiv_A^1 und \equiv_A^2 .
- c) Sei $n \in \mathbb{N}_{>0}$ beliebig. Konstruieren Sie einen DFA $A = (\Sigma, Q, \delta, q_0, F)$ mit $\Sigma = \{z\}$ und $Q = \{q_0, q_1, \ldots, q_n\}$, so dass *Schritt 2 (b)* im Minimierungsalgorithmus (siehe Folie 52) n-1 Mal wiederholt wird.

Aufgabe 10.3 Nerode-Automat

$$((5+5+5)+8=23 \text{ Punkte})$$

a) Bestimmen Sie den Nerode-Automaten für die Sprache

$$L_1 := (\{a\} \cdot \{b\}^*) \cup (\{b\} \cdot \{a\}^*)$$
 über dem Alphabet $\Sigma := \{a, b\}$

in folgenden Schritten:

- i) Geben Sie alle Äquivalenzklassen der Nerode-Relation an und beschreiben Sie jede der Klassen durch Angabe aller in ihr enthaltenen Elemente. (Z. B. $[\varepsilon]_{L_1} = \{\dots\}$)
- ii) Wählen Sie für jede Klasse einen (möglichst kurzen) Vertreter und trennen Sie alle Vertreter paarweise verschiedener Klassen jeweils durch einen Zeugen.
- iii) Geben Sie den Nerode-Automaten in grafischer Darstellung an.

Hinweis: Um alle Äquivalenzklassen zu bestimmen, beginnen Sie mit der Äquivalenzklasse $[\varepsilon]_{L_1}$ des leeren Wortes. Was passiert im Nerode-Automaten, wenn nun ein a bzw. b gelesen wird? Ist a bzw. b äquivalent zu ε ? Welche weiteren Äquivalenzklassen treten auf und welche Elemente enthalten sie?

b) Geben Sie (ohne Begründung) einen DFA mit möglichst wenigen Zuständen für die Sprache

$$L_2 := \{110, 010\} \cdot \Sigma^*$$
 über dem Alphabet $\Sigma := \{0, 1, 2\}$

an, z.B. den Nerode-Automaten.

Aufgabe 10.4 Pandemie auf Planet Y9Z (10 + 14 + 15* = 24 Punkte + 15* Extrapunkte)

Auf dem fernen Planet Y9Z breitet sich eine Krankheit aus. Forscher auf dem Planeten haben gezeigt, dass es genau $n \geq 5$ Typen t_1, t_2, \ldots, t_n von Personen gibt und die Krankheit nur zwischen Personen des gleichen Typs übertragbar ist.

Um Kontaktansteckung zu vermeiden, wird auf dem Planet folgende Regel für Warteschlangen an Kassen beschlossen: Zwischen je zwei Personen des gleichen Typs müssen mindestens zwei Personen eines anderen Typs stehen.

Eine Warteschlange wird durch ein Wort $w \in \Sigma_n^*$ mit $\Sigma_n = \{t_1, t_2, \dots, t_n\}$ repräsentiert. Das Wort $w = t_3 t_2 t_5 t_3$ repräsentiert zum Beispiel eine Warteschlange der Länge vier, wobei die erste Person vom Typ t_3 ist, die zweite vom Typ t_2 , die dritte vom Typ t_5 und die vierte wiederum vom Typ t_3 .

- a) Geben sie die Menge der legalen Warteschlangen als Sprache $L_n \subseteq \Sigma_n^*$ an.
- b) Konstruieren Sie einen DFA $A_n = (\Sigma_n, Q_n, \delta_n, q_{0n}, F_n)$ mit möglichst wenigen Zuständen für die Sprache L_n aller legalen Warteschlangen. Erläutern Sie die Bedeutung der Zustände Ihres Automaten.
- c*) Zeigen Sie: Jeder DFA für L_n besitzt mindestens n(n-1) Zustände. Hinweis: Zeigen Sie Index $(L_n) \ge n(n-1)$.