Kontextfreie Grammatiken

Was kann man mit kontextfreien Grammatiken anfangen?

Kontextfreie Grammatiken, kurz:

KFGs

werden zur Modellierung von

rekursiv definierten baumartigen Strukturen

eingesetzt.

KFGs werden unter Anderen für die Beschreibung von

- Programmiersprachen wie etwa C, Java, Pascal oder Python,
- bzw. Datenaustauschformaten, d.h. Sprachen (wie etwa HTML oder XML) als Schnittstelle zwischen Software-Werkzeugen,
- bzw. Bäumen zur Repräsentation strukturierter Daten (z.B. XML) angewandt.

Kontextfreie Grammatiken: Die formale Definition

Eine kontextfreie Grammatik

$$G = (\Sigma, V, S, P)$$

besteht aus

- einer endlichen Menge Σ von **Terminalen** und einer endlichen Menge V von **Nichtterminalen** (oder **Variablen**).
 - ▶ Die Mengen Σ und V sind disjunkt, d.h. $\Sigma \cap V = \emptyset$ gilt.
 - ▶ Die Menge $W := \Sigma \cup V$ heißt Vokabular, die Elemente in W nennt man auch Symbole,
- einem Symbol $S \in V$, dem **Startsymbol** und
- einer endlichen Menge

$$P \subseteq V \times W^*$$

von **Produktionen**. Für eine Produktion $(A, x) \in P$ schreiben wir $A \to x$.

Wir möchten alle "wohl-gebildeten" arithmetische Ausdrücke beschreiben,

- die über den Zahlen 1,2,3 gebildet sind und
- die Operatoren $+, -, \cdot$ sowie Klammern (,) benutzen.

Beispiele für wohl-gebildete arithmetische Ausdrücke sind

$$(1+3)\cdot(2+2+3)-1$$

und

$$(1+3)\cdot((2+2+3)-1).$$

Wir betrachten die KFG $G_{AA} := (\Sigma, V, S, P)$ mit

- Terminalalphabet $\Sigma := \{1, 2, 3, +, -, \cdot, (,)\}$
- Nichtterminalalphabet $V := \{Ausdruck, Operator\}$
- Startsymbol S := Ausdruck
- und der Produktionsmenge

```
\begin{array}{lll} P := & \left\{ & \textit{Ausdruck} & \rightarrow & 1 \; , \\ & \textit{Ausdruck} & \rightarrow & 2 \; , \\ & \textit{Ausdruck} & \rightarrow & 3 \; , \\ & \textit{Ausdruck} & \rightarrow & \textit{Ausdruck Operator Ausdruck} \; , \\ & \textit{Ausdruck} & \rightarrow & \left( \; \textit{Ausdruck} \; \right), \end{array} \right. \\ & \left. \begin{array}{lll} \textit{Operator} & \rightarrow & + \; , \\ \textit{Operator} & \rightarrow & - \; , \\ \textit{Operator} & \rightarrow & - \; , \\ \textit{Operator} & \rightarrow & \cdot \; \end{array} \right\} \end{array}
```

Wir sparen Schreibarbeit

Wir fassen Zeilen, die das gleiche Nichtterminal auf der linken Seite des Pfeils aufweisen, zu einer einzigen Zeile zusammen.

Damit können wir die Produktionsmenge P auch kurz wie folgt beschreiben:

Die Produktion $\textit{Ausdruck} \rightarrow \textit{Ausdruck Operator Ausdruck}$ können wir auffassen

- als **Strukturregel**, die besagt "Ein *Ausdruck* besteht aus einem *Ausdruck*, gefolgt von einem *Operator*, gefolgt von einem *Ausdruck* oder als
- Ersetzungsregel, die besagt, dass das "Symbol Ausdruck durch das Wort Ausdruck Operator Ausdruck ersetzt werden kann."

Ableitungen

Ein Ableitungsschritt

Sei
$$G = (\Sigma, V, S, P)$$
 eine KFG.

Falls

$$A \rightarrow x$$

eine Produktion in P ist und $u \in W^*$ und $v \in W^*$ beliebige Worte über dem Vokabular $W = \Sigma \cup V$ sind, so schreiben wir

$$uAv \Longrightarrow_G uxv$$
 (bzw. kurz: $uAv \Longrightarrow uxv$)

und sagen, dass uAv in einem Ableitungsschritt zu uxv umgeformt werden kann.

Mehrere Ableitungsschritte: Ableitungen

Eine **Ableitung** ist eine endliche Folge von hintereinander angewendeten Ableitungsschritten.

Für Worte $w \in W^*$ und $w' \in W^*$ schreiben wir

$$w \stackrel{*}{\Longrightarrow}_{G} w'$$
 (bzw. kurz: $w \stackrel{*}{\Longrightarrow} w'$),

um auszusagen, dass es eine endliche Folge von Ableitungsschritten gibt, die w zu w' umformt.

Spezialfall: Diese Folge darf auch aus 0 Ableitungsschritten bestehen, d.h. f.a. $w \in W^*$ gilt:

$$w \stackrel{*}{\Longrightarrow}_G w$$
.

Ableitungen: Ein Beispiel

Für die Grammatik $G_{AA} = (\Sigma, V, S, P)$ arithmetischer Ausdrücke gilt

$$\textit{Ausdruck} \stackrel{*}{\Longrightarrow} (1+3) \cdot 2,$$

denn

$$P = \left\{ egin{array}{llll} Ausdruck &
ightarrow & 1 & | & 2 & | & 3 & , \\ Ausdruck &
ightarrow & Ausdruck Operator Ausdruck & | & (Ausdruck) & , \\ Operator &
ightarrow & + & | & - & | & \cdot & \end{array}
ight.$$

und

Ausdruck
$$\Rightarrow$$
Ausdruck Operator Ausdruck \Rightarrow (Ausdruck) Operator Ausdruck \Rightarrow (Ausdruck Operator Ausdruck) Operator Ausdruck \Rightarrow (Ausdruck + Ausdruck) Operator Ausdruck \Rightarrow (Ausdruck + Ausdruck) · Ausdruck \Rightarrow (1 + Ausdruck) · Ausdruck \Rightarrow (1 + 3) · Ausdruck \Rightarrow (1 + 3) · 2

Kontextfreie Sprachen

Kontextfreie Sprachen L(G)

Sei $G = (\Sigma, V, S, P)$ eine KFG.

(a) Die von G erzeugte Sprache L(G) ist die Menge aller Worte über dem Terminalalphabet Σ , die aus dem Startsymbol S abgeleitet werden können. D.h.:

$$L(G) := \{ w \in \Sigma^* : S \stackrel{*}{\Longrightarrow}_G w \}.$$

(b) Eine Sprache *L* heißt genau dann **kontextfrei**, wenn es eine kontextfreie Grammatik *G* gibt mit

$$L = L(G)$$
.

Achtung: L(G) ist eine Teilmenge von $\Sigma^* \Longrightarrow$ In den Worten aus L(G) kommen keine Nichtterminale vor!

Die von G_{AA} erzeugte Sprache

Die Sprache $L(G_{AA})$ besteht aus allen über den Zahlen 1,2,3, den Operatoren $+,-,\cdot$ und den Klammersymbolen (,) wohl-geformten arithmetischen Ausdrücken.

```
P = \left\{ egin{array}{lll} Ausdruck & 
ightarrow & 1 & | & 2 & | & 3 & , \\ & Ausdruck & 
ightarrow & Ausdruck Operator Ausdruck & | & ( Ausdruck ) & , \\ & Operator & 
ightarrow & + & | & - & | & \cdot & \end{array} 
ight.
```

Welche Worte gehören zu $L(G_{AA})$?

- ? 3,
- ? (3+1),
- ? (),
- ? (3+1,
- ? $1 + 2 \cdot 3$,
- ? $(3+1) \cdot (2+2+3) 1$,
- ? $2 \cdot ((3+1) \cdot (2+2+3) 1)$,
- ? ((3+1)),
- ? Ausdruck Operator Ausdruck

Wohlgeformte Klammerausdrücke

Sei D die Sprache aller wohl-geformten Klammerausdrücke über $\Sigma = \{\,(,\,)\,\}.$

- 1. Wohl-geformte Klammerausdrücke sind
 - (), ((())), (())()((())), (()())
- 2. Nicht wohl-geformt sind
 - (()(), ((())

Es ist D = L(G) für die kontextfreie Grammatik $G = (\Sigma, \{S\}, S, P)$ mit den Produktionen

$$S \rightarrow \epsilon \mid (S) \mid SS$$

Eine äquivalente Lösung erhält man mit den Produktionen

$$S \rightarrow \epsilon \mid (S)S$$
.

Baue einen wohl-geformten Klammerausdruck von links nach rechts auf:

Die Produktion S o (S)S fügt die äußeren Klammern für den "linkesten" Klammerausdruck ein.

KFGs und Programmiersprachen

Ein Fragment von Pascal

Wir beschreiben einen (allerdings sehr kleinen) Ausschnitt von Pascal durch eine kontextfreie Grammatik.

- Wir benutzen das Alphabet $\Sigma = \{a, \dots, z, ; :=, begin, end, while, do\}$ und
- die Variablen *S*, statements, statement, assign-statement, while-statement, variable, boolean, expression.
- variable, boolean und expression sind im Folgenden nicht weiter ausgeführt.

Programmiersprachen und kontextfreie Sprachen

Lassen sich die syntaktisch korrekten Programme einer modernen Programmiersprache durch eine kontextfreie Sprache definieren?

- 1. Antwort: Nein. In Pascal muss zum Beispiel sichergestellt werden, dass Anzahl und Typen von formalen und aktuellen Parameter übereinstimmen.
 - ▶ Die Sprache $\{ww : w \in \Sigma^*\}$ wird sich als nicht kontextfrei herausstellen.
- 2. Antwort: Im Wesentlichen ja, wenn man "Details" wie Typ-Deklarationen und Typ-Überprüfungen ausklammert:
 - Man beschreibt die Syntax durch eine kontextfreie Grammatik, die alle syntaktisch korrekten Programme erzeugt.
 - Allerdings werden auch syntaktisch inkorrekte Programme (z.B. aufgrund von Typ-Inkonsistenzen) erzeugt.

Eine "kontextfreie" Grammatik für Python

Eine Grammatik für Python wird beschrieben in

```
https://docs.python.org/3/reference/grammar.html (zuletzt besucht am 30.01.2019)
```

Die Grammatik ist "im Wesentlichen" kontextfrei: In der Beschreibung der Grammatik werden zum Beispiel folgende Notationen als hilfreiche Abkürzungen verwendet:

- der Kleene-Stern und das Kleene-Plus,
- eckige Klammern [...] für optionale Strings

Lässt man einen "Lexer" in einem Vorverarbeitungsschritt über das Anwender-Programm laufen, um

- Einrückungen zu "verstehen" (NEWLINE, INDENT, DEDENT),
- Schlüsselwörter (if, for , else, ...) zu entdecken,
- Kommentare zu entfernen, ...

dann hat der **Parser** im eigentlichen Verarbeitungsschritt nur noch ein kontextfreies Sprachenproblem zu lösen.

Die Backus-Naur-Form und die Java-Syntax

Die Backus-Naur-Form (BNF) wird zur Formalisierung der Syntax von Programmiersprachen genutzt.

• BNF ist ein "Dialekt" der kontextfreien Grammatiken. Produktionen der Form

$$X \rightarrow aYb$$

(mit $X, Y \in V$ und $a, b \in \Sigma$) werden in BNF notiert als

$$<$$
X $>$::= a $<$ Y $>$ b

 Beispiel: Eine Beschreibung der Syntax von Java in einer BNF-Variante wird beschrieben in

https://docs.oracle.com/javase/specs/jls/se11/html/index.html (zuletzt besucht am 05.02.2019)

Für kontextfreie Sprachen ist eine effiziente Syntaxanalyse möglich.

Frage: Was ist eine Syntaxanalyse?

Antwort: Die Bestimmung einer Ableitung bzw. eines Ableitungsbaums.

Und was ist ein Ableitungsbaum?

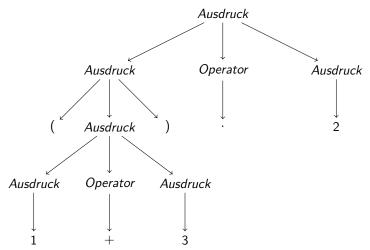
Ableitungsbäume

Ableitungen lassen sich am besten mit Ableitungsbäumen veranschaulichen.

Betrachte dazu in G_{AA} die Ableitung

Ableitungen und Ableitungsbäume

Diese Ableitung hat den folgenden **Ableitungsbaum**:



Beachte: Ein Ableitungsbaum kann mehrere Ableitungen repräsentieren.

Sei $G = (\Sigma, V, S, P)$ eine KFG und sei $w \in L(G)$.

Jede Ableitung

$$S \stackrel{*}{\Longrightarrow}_G w$$

lässt sich als gerichteter Baum darstellen, bei dem

- 1. jeder Knoten mit einem Symbol aus $\Sigma \cup V \cup \{\varepsilon\}$ markiert ist und
- 2. die Kinder jedes Knotens eine festgelegte Reihenfolge haben.
 - In der Zeichnung eines Ableitungsbaums werden von links nach rechts zunächst das "erste Kind" dargestellt, dann das zweite, dritte etc.
 - Der Ableitungsbaum ist also ein geordneter Baum.

- 3. Die Wurzel des Baums ist mit dem Startsymbol S markiert.
- 4. Jeder Knoten mit seinen Kindern repräsentiert die Anwendung einer Produktion aus *P*, also einer Produktion

$$A \rightarrow x \text{ mit } A \in V, x \in (V \cup \Sigma)^*.$$

Die Anwendung der Produktion wird im Ableitungsbaum repräsentiert durch einen Knoten v, der mit dem Symbol A markiert ist.

- ▶ Wenn $x \in (V \cup \Sigma)^+$, dann hat v genau |x| viele Kinder, so dass das i-te Kind mit dem i-ten Symbol von x markiert ist (f.a. $i \in \{1, ..., |x|\}$).
- ▶ Wenn $x = \varepsilon$, dann hat v genau ein Kind, das mit ε markiert ist.

Syntaxanalyse

- 1. Die Bedeutung eines syntaktisch korrekten Programms p wird durch **den** Ableitungsbaum von p bestimmt.
- 2. Und wenn es mehrere Ableitungsbäume für p gibt?

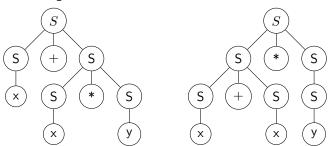
Die Spezifikation der Programmiersprache – also die KFG – muss garantieren, dass es für alle syntaktisch korrekten Programme nur einen Ableitungsbaum gibt. Solche KFGs heißen eindeutig.

Die Produktionen $S \to S + S \mid S * S \mid (S) \mid x \mid y$ definieren arithmetische Ausdrücke auf **mehrdeutige** Art und Weise.

Denn das Wort

$$x + x * y$$

hat die beiden Ableitungsbäume:



Der erste Baum führt zur Auswertung x + (x * y), der zweite zu (x + x) * y.

Wir brauchen eine eindeutige Grammatik!

Die neue Grammatik G legt fest, dass Multiplikation stärker "bindet" als Addition.

- $V := \{S, T, F\}$: S ist das Startsymbol, T "erzeugt" Terme, F "erzeugt" Faktoren.
- Die Produktionen von G haben die Form

Warum ist diese Grammatik eindeutig?
Eine Antwort wird in der Veranstaltung "Theoretische Informatik" gegeben.

Klammerausdrücke: Eine eindeutige Grammatik

Die "Klammersprache" L wird durch die Produktionen

$$S \rightarrow \epsilon \mid SS \mid (S)$$
.

erzeugt.

- 1. Die Grammatik ist **mehrdeutig**, denn zum Beispiel besitzt das leere Wort mehrere Ableitungsbäume. Welche?
- 2. Wir erhalten eine eindeutige Grammatik mit den Produktionen

$$S \rightarrow \epsilon \mid (S)S$$
.

- ► Ein Klammerausdruck wird zwangsweise von links nach rechts aufgebaut.
- ▶ Die Produktion $S \to (S)S$ fügt die äußeren Klammern für den linkesten Klammerausdruck ein.

Wir konstruieren eine KFG

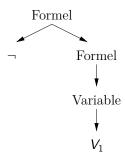
$$G_{\rm AL} = (\Sigma, V, S, P),$$

deren Sprache $L(G_{\rm AL})$ gerade die Menge aller aussagenlogischen Formeln ist, in denen nur Variablen aus $\{V_0, V_1, V_2\}$ vorkommen.

- Terminale: $\Sigma := \{ V_0, V_1, V_2, \mathbf{0}, \mathbf{1}, \neg, \wedge, \vee, \rightarrow, \leftrightarrow, \oplus, (,) \},$
- Nichtterminale: $V := \{ Formel, Variable, Junktor \},$
- **Startsymbol:** S := Formel,
- Produktionsmenge *P* :=

```
 \left\{ \begin{array}{ccc|c} \textit{Formel} & \rightarrow & \textbf{0} & | & \textbf{1} & | & \textit{Variable} \; , \\ \textit{Formel} & \rightarrow & \neg \; \textit{Formel} \; | \; (\; \textit{Formel Junktor Formel} \; ) \; , \\ \textit{Variable} & \rightarrow & V_0 \; | \; V_1 \; | \; V_2 \; , \\ \textit{Junktor} & \rightarrow & \wedge \; | \; \vee \; | \; \rightarrow \; | \; \leftrightarrow \; | \; \oplus \; \end{array} \right.
```

Die Aussagenlogik als kontextfreie Sprache

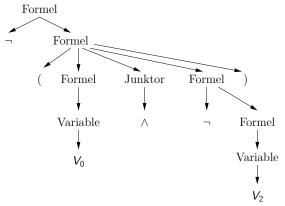


Der Ableitungsbaum repräsentiert die Ableitung

Formel
$$\Longrightarrow \neg$$
 Formel $\Longrightarrow \neg$ Variable $\Longrightarrow \neg V_1$

Das durch diese(n) Ableitung(sbaum) erzeugte Wort in der Sprache $L(G_{\rm AL})$ ist die Formel $\neg V_1$.

Die Aussagenlogik als kontextfreie Sprache



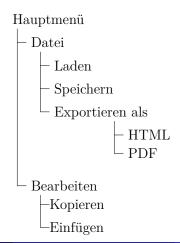
Dieser Ableitungsbaum repräsentiert die Ableitung der Formel $\neg(V_0 \land \neg V_2)$

Formel
$$\Rightarrow \neg$$
 Formel $\Rightarrow \neg$ (Formel Junktor Formel)
 $\Rightarrow \neg$ (Variable Junktor Formel) $\Rightarrow \neg$ (V₀ \land Formel) $\Rightarrow \neg$ (V₀ \land ¬Variable)
 $\Rightarrow \neg$ (V₀ \land ¬V₂).

Menüs in Benutzungsoberflächen

Ein Menü besteht aus einem Menünamen und einer Folge von Einträgen: Ein Eintrag besteht aus einem Operationsnamen oder selbst wieder einem Menü.

Beispiel:



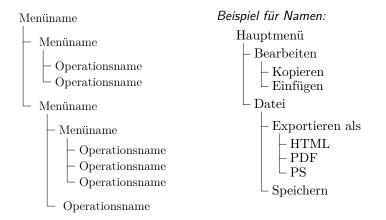
Ein Menü besteht aus einem Menünamen und einer Folge von Einträgen: Ein Eintrag besteht aus einem Operationsnamen oder selbst wieder einem Menü.

Benutze z.B. die Grammatik $G_{\mathsf{Men\"{u}}} = (\Sigma, V, S, P)$ mit

```
Σ := { Menüname, Operationsname },
V := { Menü, Eintragsfolge, Eintrag },
S := Menü,
P := { Menü → Menüname Eintragsfolge ,
 Eintragsfolge → Eintrag | Eintrag Eintragsfolge ,
 Eintrag → Operationsname | Menü }.
```

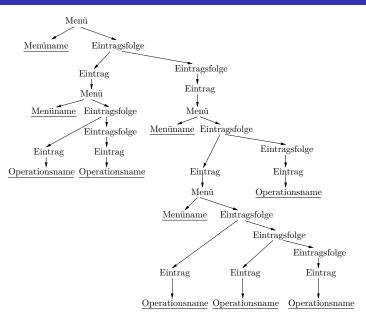
Menüs in Benutzungsoberflächen

Die Struktur eines Menüs:



Und wie sieht der Ableitungsbaum für das Beispiel aus?

Menüs in Benutzungsoberflächen



HTML-Tabellen und KFGs

HTML (HyperText Markup Language) ist ein Format zur Beschreibung von verzweigten Dokumenten im Internet.

Uns interessiert hier der HTML-Code zur Erzeugung von HTML-Tabellen.

HTML-Tabellen: Ein Beispiel

besitzt den HTML-Code:

Die HTMI -Tabelle

Tag	Zeit	Raum
Di	8:00-10:00	Hörsaal VI
Do	8:00-10:00	Hörsaal VI

```
 Tag 
 Zeit 
  Raum 
> Di 
 8:00-10:00 
  Hörsaal VI 
Do 
 8:00-10:00 
  Hörsaal VI 
</t.r>
```

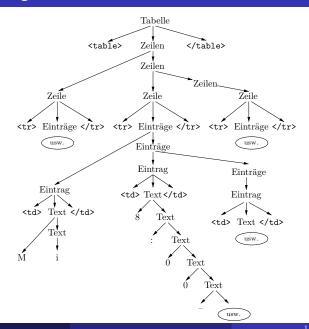
Die Symbole und , und bzw. und stehen für Anfang und Ende einer **Tabelle**, für Anfang und Ende einer **Zeile der Tabelle** bzw. Anfang und Ende eines **Eintrags in einer Zelle der Tabelle**.

Eine KFG zur Erzeugung von HTML-Tabellen

Wir konstruieren eine Grammatik $G_{\rm HTML} = (\Sigma, V, S, P)$, so dass $G_{\rm HTML}$ genau die (möglicherweise geschachtelten) HTML-Tabellen erzeugt.

```
, , >, , , , ,
a,...,z, A,...,Z, 0,1,...,9, :, -, __
\Sigma := \{
• V := { Tabelle, Zeilen, Zeile, Einträge, Eintrag, Text }
\bullet S := Tabelle
• P :=
   \{ Tabelle \rightarrow  Zeilen  ,
           Zeilen \rightarrow Zeile | Zeile Zeilen ,
             Zeile \rightarrow  Einträge ,
         Einträge \rightarrow Eintrag | Einträge,
          Eintrag \rightarrow  Text  |  Tabelle  ,
              Text \rightarrow a Text \mid b Text \mid \cdots \mid z Text \mid A Text \mid B Text \mid \cdots \mid Z Text
             Text \rightarrow 0 Text \mid \cdots 9 Text \mid : Text \mid - Text \mid \_Text,
              Text \rightarrow a \mid b \mid \cdots \mid z \mid A \mid B \mid \cdots \mid Z \mid 0 \mid \cdots \mid 9 \mid : \mid - \mid \Box
```

Der Ableitungsbaum der HTML-Tabelle



Reguläre und kontextfreie Sprachen

Links- und Rechtsreguläre Grammatiken

Kann jede reguläre Sprache von einer kontextfreien Grammatik erzeugt werden?

Sei $G = (\Sigma, V, S, P)$ eine kontextfreie Grammatik.

(a) G heißt rechtsregulär, wenn alle Produktionen die Form

$$A \rightarrow aB$$
 oder $A \rightarrow \varepsilon$

für Variable $A, B \in V$ und ein Terminal $a \in \Sigma$ besitzen.

(b) G heißt linksregulär, wenn alle Produktionen die Form

$$A \rightarrow Ba$$
 oder $A \rightarrow \varepsilon$

für Variable $A, B \in V$ und ein Terminal $a \in \Sigma$ besitzen.

Reguläre und kontextfreie Sprachen

- (a) Jede reguläre Sprache wird von einer rechtsregulären Grammatik erzeugt.
 - Siehe Tafel.
- (b) Die Klasse der kontextfreien Sprachen ist eine **echte** Obermenge der regulären Sprachen, denn

$$L = \{ a^n b^n : n \in \mathbb{N} \}$$

ist kontextfrei: Die kontextfreie Grammatik $G = (\{a,b\},\{S\},S,P)$ mit den Produktionen

$$S o aSb \mid \epsilon$$

- erzeugt L.
- ▶ aber *L* ist nicht regulär.
- (c) Eine Sprache L ist genau dann regulär, wenn es eine links- oder rechtsreguläre Grammatik G gibt mit

$$L = L(G)$$
.

Details in der Veranstaltung "Theoretische Informatik".

Zusammenfassung

(a) KFGs werden eingesetzt, um

rekursiv definierte Strukturen

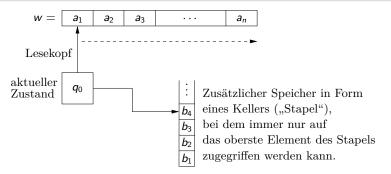
zu modellieren.

- (b) Es gibt z. B. wichtige Anwendungen in der Spezifikation von
 - Programmiersprachen,
 - ► HTML,
 - ► XML.
- (c) Der Ableitungsbaum legt die Semantik eines syntaktisch korrekten Programms fest.

Ausblick

Kellerautomaten

Schematische Darstellung der Verarbeitung eines Eingabeworts durch einen Kellerautomaten:



In der "Theoretischen Informatik" wird gezeigt, dass kontextfreie Grammatiken und nichtdeterministische Kellerautomaten genau die Klasse der kontextfreien Sprachen erzeugen, bzw. akzeptieren.

Deterministisch kontextfreie Sprachen

Eine Sprache *L* heißt **deterministisch kontextfrei**, wenn *L* von einem deterministischen Kellerautomaten akzeptiert wird.

• Die Sprache

$$L_1 = \{ a^n b^n : n \in \mathbb{N} \}$$

ist deterministisch kontextfrei.

• die Sprache

$$L_{2} = \{ a^{n}b^{n}c^{m} : n, m \in \mathbb{N} \} \cup \{ a^{m}b^{n}c^{n} : n, m \in \mathbb{N} \}$$

ist kontextfrei, aber nicht deterministisch kontextfrei.

Details in der Veranstaltung "Theoretische Informatik".

Das Wort-Problem

Das Wortproblem:

"Erzeugt eine KFG $G = (\Sigma, V, S, P)$ das Wort w?"

sprich: "Ist das Programm w syntaktisch korrekt?"

Ein Parser muss das Wortproblem für jedes Eingabeprogramm w lösen, deshalb kommt dem Wortproblem eine große Bedeutung zu.

- (a) Der CYK-Algorithmus löst das Wortproblem für eine Grammatik $G = (\Sigma, V, S, P)$ in Zeit proportional zu $|w|^3 \cdot |P|$.
- (b) Kubische Laufzeit ist völlig inakzeptabel, das Wortproblem für deterministisch kontextfreie Sprachen ist hingegen in Linearzeit lösbar.
 - Die Syntax vieler Programmiersprachen wird deshalb von deterministisch kontextfreien Grammatiken definiert.

Details in der Veranstaltung "Theoretische Informatik".

Eine nicht-kontextfreie Sprache

(a) Die Sprache

$$L = \{a^n b^n c^n : n \in \mathbb{N} \}$$

ist **nicht** kontextfrei,

(b) aber ihre Komplement-Sprache

$$\overline{L} = \{ w \in \{a, b, c\}^* : w \notin L \}$$

ist kontextfrei!

Details in der Veranstaltung "Theoretische Informatik".

Kontextfreie Sprachen sind nicht unter Komplementbildung abgeschlossen!