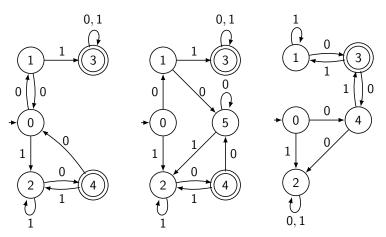
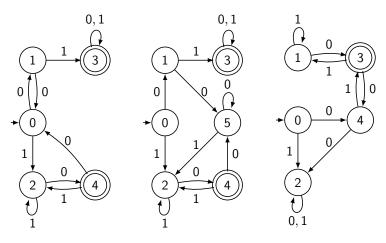
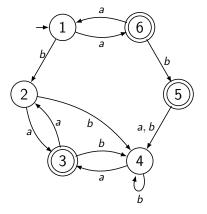

DFAs


Betrachte die Sprache aller Worte über dem Alphabet $\{0,1\}$, die mit 01 anfangen oder mit 10 aufhören. Welcher DFA akzeptiert diese Sprache?

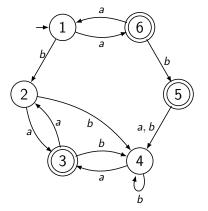
25. Januar 2024


DFAs

Betrachte die Sprache aller Worte über dem Alphabet $\{0,1\}$, die mit 01 anfangen oder mit 10 aufhören. Welcher DFA akzeptiert diese Sprache?

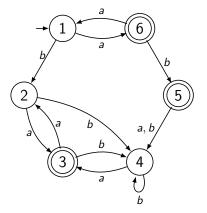

DFAs

Betrachte die Sprache aller Worte über dem Alphabet $\{0,1\}$, die mit 01 anfangen oder mit 10 aufhören. Welcher DFA akzeptiert diese Sprache?


Zustandsminimierung (1)

Teilen Sie die Zustände des Automaten links in ihre Äquivalenzklassen ein:

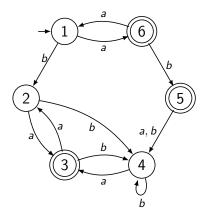
- (A) {1}, {2}, {3}, {4}, {5}, {6}
- (B) {1}, {2}, {4}, {3,5,6}
- (C) {1}, {2}, {4}, {3,5}, {6}
- (D) {1}, {2,4}, {3,5}, {6}
- (E) {1}, {2,4}, {3,5,6}
- (F) $\{1,2,4\}, \{3,5,6\}$


Zustandsminimierung (1)

Teilen Sie die Zustände des Automaten links in ihre Äquivalenzklassen ein:

- (A) {1}, {2}, {3}, {4}, {5}, {6}
- (B) {1}, {2}, {4}, {3,5,6}
- (C) {1}, {2}, {4}, {3,5}, {6}
- (D) {1}, {2,4}, {3,5}, {6}
- (E) {1}, {2,4}, {3,5,6}
- (F) {1,2,4}, {3,5,6}

Zustandsminimierung (1)



Teilen Sie die Zustände des Automaten links in ihre Äquivalenzklassen ein:

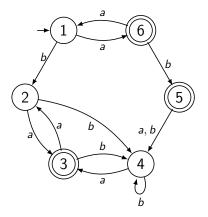
- (A) {1}, {2}, {3}, {4}, {5}, {6}
- (B) {1}, {2}, {4}, {3,5,6}
- (C) {1}, {2}, {4}, {3,5}, {6}
- (D) {1}, {2,4}, {3,5}, {6}
- (E) {1}, {2,4}, {3,5,6}
- (F) {1,2,4}, {3,5,6}

Auflösung: (D)

Zustandsminimierung (2)

Was gilt für diesen Automaten A?

- (A) Die Klassen von \equiv_{A}^{0} sind $\{1\}, \{2\}, \{4\}, \{3,5,6\}$
- (B) Die Klassen von \equiv^1_A sind $\{1,2,4\},\ \{3,5,6\}$
- (C) Für alle $i \in \mathbb{N}_{>0}$: $(ab)^i \in L(A)$
- (D) Für alle $i \in \mathbb{N}_{>0}$: $(ab)^i \notin L(A)$
- (E) Index(L(A)) = 4


Zustandsminimierung (2)

Was gilt für diesen Automaten A?

- (A) Die Klassen von \equiv_{A}^{0} sind $\{1\}, \{2\}, \{4\}, \{3,5,6\}$
- (B) Die Klassen von \equiv^1_A sind $\{1,2,4\},\ \{3,5,6\}$
- (C) Für alle $i \in \mathbb{N}_{>0}$: $(ab)^i \in L(A)$
- (D) Für alle $i \in \mathbb{N}_{>0}$: $(ab)^i \notin L(A)$
- (E) Index(L(A)) = 4

Zustandsminimierung (2)

Was gilt für diesen Automaten A?

- (A) Die Klassen von \equiv_A^0 sind $\{1\}, \{2\}, \{4\}, \{3, 5, 6\}$
- (B) Die Klassen von \equiv^1_A sind $\{1,2,4\},\ \{3,5,6\}$
- (C) Für alle $i \in \mathbb{N}_{>0}$: $(ab)^i \in L(A)$
- (D) Für alle $i \in \mathbb{N}_{>0}$: $(ab)^i \notin L(A)$
- (E) Index(L(A)) = 4

Auflösung: (E) Index(L(A)) = 4

25. Januar 2024

Nerode (1)

Betrachten Sie die Sprache

$$L = \{\{ab\} \cdot \Sigma^*\} \cup \{\Sigma^* \cdot \{ba\}\}$$
 mit Alphabet $\Sigma = \{a,b,c\}$

Bestimmen Sie die Äquivalenzklassen der Nerode-Relation!

- (A) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[aa]_L$, $[ab]_L$, $[ba]_L$
- (B) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[c]_L$, $[ab]_L$, $[ba]_L$
- (C) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[c]_L$, $[aa]_L$, $[ab]_L$, $[ba]_L$
- (D) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[ab]_L$, $[ba]_L$
- (E) $[\varepsilon]_L$, $[ab]_L$, $[ba]_L$

Nerode (1)

Betrachten Sie die Sprache

$$L = \{\{ab\} \cdot \Sigma^*\} \cup \{\Sigma^* \cdot \{ba\}\}$$
 mit Alphabet $\Sigma = \{a,b,c\}$

Bestimmen Sie die Äquivalenzklassen der Nerode-Relation!

- (A) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[aa]_L$, $[ab]_L$, $[ba]_L$
- (B) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[c]_L$, $[ab]_L$, $[ba]_L$
- (C) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[c]_L$, $[aa]_L$, $[ab]_L$, $[ba]_L$
- (D) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[ab]_L$, $[ba]_L$
- (E) $[\varepsilon]_L$, $[ab]_L$, $[ba]_L$

Nerode (1)

Betrachten Sie die Sprache

$$L = \{\{ab\} \cdot \Sigma^*\} \cup \{\Sigma^* \cdot \{ba\}\} \text{ mit Alphabet } \Sigma = \{a,b,c\}$$

Bestimmen Sie die Äquivalenzklassen der Nerode-Relation!

- (A) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[aa]_L$, $[ab]_L$, $[ba]_L$
- (B) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[c]_L$, $[ab]_L$, $[ba]_L$
- (C) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[c]_L$, $[aa]_L$, $[ab]_L$, $[ba]_L$
- (D) $[\varepsilon]_L$, $[a]_L$, $[b]_L$, $[ab]_L$, $[ba]_L$
- (E) $[\varepsilon]_L$, $[ab]_L$, $[ba]_L$

Auflösung: (A), (B)