
Optimization and Uncertainty

Notes

Summer 2021

Martin Hoefer

2

Organizational

Lectures:
� Email: mhoefer@cs.uni-frankfurt.de
� Office: 115, R.M.S. 11-15, physical office hours postponed until further notice
� Lectures Tue/Thu every week, mostly writing on the board, recorded as videos
� All relevant text is in this document – only figures with examples are missing
(I make them up on the fly in the lecture)

� Will provide additional material on the website
� This is a very new course, held for the very first time. This document is continously
expanded, updated and corrected throughout the course.

� Please bear with me if things are not as smooth immediately as in other courses.

Exercises/Exams:
� Weekly exercise sheets, published on Tuesday of week i, due Tuesday of week i+ 1,
� Turn it in via email, use PDF format.
� Great to discuss solutions, but write them up in your own words
� Returned and discussed in the next exercise session
� Exercise sessions online, live via Zoom
� Access data for the room provided in the beginning of the semester
� If you score x% of total number of exercise points, then

If 50 ≤ x < 75, one grading step bonus for exam (e.g., 2.0 to 1.7, or 3.7 to 3.3)
If 75 ≤ x, two grading steps bonus for exam (e.g., 2.0 to 1.3, or 3.3 to 2.7)

� Oral exams in August 2021

3

4

Contents

1 Online Optimization 7

2 Online Algorithms with Random-Order Arrival 13

2.1 The Secretary Problem . 13

2.1.1 OnlineMax Problem . 13

2.2 Secretary Problem . 14

2.3 Secretary Matching . 18

2.4 Item Allocation in Markets . 21

3 Online Algorithms with Distributions 27

3.1 Prophet Inequalities . 27

3.1.1 Independent Distributions . 27

3.1.2 IID . 29

3.2 Markov Decision Processes . 31

3.2.1 Optimal Policies . 32

3.2.2 Examples for Optimal Policies . 33

3.3 Yao’s Principle . 37

3.4 Independent Set . 40

3.4.1 Random Graph and Worst-Case Arrival 40

3.4.2 Worst-Case Graph and Random-Order Arrival 43

3.4.3 Inductive Independence and Graph Sampling 46

4 Probing and Testing 49

4.1 k-Probing and Adaptivity Gap . 49

4.2 k-Testing . 54

4.3 Probing with Cost . 59

5 Recommendation 63

5.1 Bayesian Persuasion . 63

5.1.1 IID Boxes . 66

5.1.2 Independent Boxes . 70

5.2 Delegation . 74

5

6 CONTENTS

6 Stochastic Multi-Armed Bandits 79
6.1 Infinite Markov Decision Processes . 79
6.2 Markovian Multi-Armed Bandits . 82
6.3 Stochastic Multi-Armed Bandits . 87

7 Adversarial No-Regret Learning 91
7.1 Majority Algorithms and the Experts Problem 91
7.2 Multi-Armed Bandits . 95
7.3 Online Convex Optimization . 99

7.3.1 Generalized Infinitesimal Gradient Ascent 100
7.3.2 Follow-the-Regularized-Leader . 102

7.4 Zero-Sum Games . 108

A Stochastic Concepts and Tools 113
A.1 Distributions, Conditional and Independent Events 113
A.2 Random Variables, Expectation, Concentration 115

Chapter 1

Online Optimization

The central challenge of online algorithms is uncertainty about the future. In an online prob-
lem, the input is revealed gradually over time. An online algorithm must directly respond
to the input pieces and make immediate and irrevocable decisions without knowing fu-
ture parts of the input. In this section, we briefly introduce fundamental ideas and analysis
techniques surrounding online problems.

Running example in this section is the Ski-Rental problem:

� There are n days, n known in advance, each day you want to go skiing.
� Only in the morining you realize if the ski resort is open on that day or not
� Each day that it is open, you can either rent equipment or buy it
� Rent is 1e per day, buying costs Be, B > 1.
� If you buy, you don’t have to rent anymore

Goal: Minimize the total cost of renting plus buying.

Consider the Simple Algorithm:
Rent until there are B − 1 open days. On the B-th open day buy the equipment.

We denote by σ the input sequence (here: label open/closed for each of the n days), by
c(ALG(σ)) the cost of an algorithm ALG for the problem, and by c(OPT (σ)) the optimal
cost achievable on the input sequence σ.

Theorem 1. The simple algorithm obtains a cost of at most 2−1/B times the optimal cost.

Proof. Use a case analysis based on the (unknown) number of open days.

� σ has at most B − 1 open days: Algorithm rents only, optimum rents only. Algorithm
is optimal: c(ALG(σ)) = c(OPT (σ))

� σ has at least B open days: Algorithm rents B−1 days and buys, c(ALG(σ)) = 2B−1.
Optimum buys on day 1, c(OPT (σ)) = B. Hence:

c(ALG(σ)) = 2B − 1 =

(
2B − 1

B

)
·B =

(
2− 1

B

)
· c(OPT (σ)).

7

8 CHAPTER 1. ONLINE OPTIMIZATION

We use the competitive ratio to analyze online algorithms. A deterministic algorithm
ALG for a minimization problem is α-competitive if for every input sequence σ we have

c(ALG(σ)) ≤ α · c(OPT (σ) + b,

where b ≥ 0 is a constant independent of the input. Similarly, for a maximization problem,
where we want to maxmize the valuation function v, we call ALG α-competitive if for
every input sequence σ we have

v(ALG(σ)) ≥ 1

α
· v(OPT (σ)− b.

If b = 0, we call ALG strictly α-competitive.

Observe that no deterministic algorithm can beat the guarantee of the simple algorithm.

Theorem 2. There is no deterministic algorithm for Ski-Rental that is strictly α-competitive
for any α < 2− 1/B.

Proof. Consider any deterministic algorithm ALG. Clearly, the algorithm never needs to
rent after it buys, so it first rents for a number of days and then buys. We concentrate on
instances with n = 2B. Let 0 ≤ ℓ ≤ n be the last open day on which the algorithm rents.

[Pic: Cost of algorithm, cost of optimum]

Case ℓ = n:
� Consider an input sequence σ that has only open days.
� Algorithm never buys, has cost c(ALG(σ)) = n = 2B.
� Optimum buys right away, c(OPT (σ)) = B.
� Hence, for this sequence σ, the competitive ratio is

c(ALG(σ))

c(OPT (σ))
=

2B

B
= 2.

Case ℓ < n:
� Consider an input sequence σ with ℓ+ 1 open days.
� Algorithm rents until day ℓ, then buys: c(ALG(σ)) = ℓ+B.
� Optimum chooses the minimum of renting and buying, c(OPT (σ)) = min{ℓ+ 1, B}.
� Hence, for this sequence σ, the competitive ratio is lower bounded by

c(ALG(σ))

c(OPT (σ))
=

ℓ+B

min{ℓ+ 1, B}
= max

(
ℓ+B

ℓ+ 1
,
ℓ+B

B

)
≥ 2B − 1

B
= 2− 1

B
.

Note: For the maximum, the first term is decreasing in ℓ, the second increasing in ℓ. Thus,
the maximum is minimized when they are the same, i.e., when ℓ+ 1 = B.

Thus, for every algorithm, there is an input sequence such that the cost of the algorithm
and the optimum for that input sequence differs by at least a factor 2− 1/B.

9

This theorem seems to suggest that the simple algorithm is really the best algorithmic idea
we can hope for – it is optimal in terms of competitive ratio. But how meaningful is this
statement?

One issue is that we restricted attention to deterministic algorithms. What if the algorithm
is randomized? Another issue is the type of worst-case analysis – we require that the ratio
must hold for each and every input sequence, even the worst one (for that algorithm). What
if there is more information about the input, e.g., when we have some stochastic distribution
about the opening days? Randomization in algorithm and/or input can lead to much better
results.

Let us briefly discuss a simple randomized online algorithm. It uses random coin flips to
make decisions about the input. As a consequence, the algorithm has an expected cost for
every input σ (expected over internal randomization in the algorithm).

A randomized algorithm for a minimization problem is α-competitive if for every input
sequence σ we have

E[c(ALG(σ))] ≤ α · c(OPT (σ) + b,

where b ≥ 0 is a constant independent of the input. Similarly, for a maximization problem,
where we want to maxmize the valuation function v, we call ALG α-competitive if for
every input sequence σ we have

E[v(ALG(σ))] ≥ 1

α
· v(OPT (σ)− b.

If b = 0, we call ALG strictly α-competitive.

Note that the simple algorithm is optimal for a small number of open days. If there are
many open days, the algorithm buys way too late. Hence, a natural idea is to buy earlier
with some probability. This means we have more cost for a small number of open days, but
less cost if there are many open days. Overall, this turns out to be a profitable adjustment.

The Randomized Simple Algorithm: Flip a fair 50/50 coin.
If heads: Run the Simple Algorithm.
Otherwise: Rent for 3

5
·B open days, then buy.

Theorem 3. The randomized simple algorithm for Ski-Rental is strictly 11/6-competitive.

Proof. Use a case analysis on the number k of open days.

Case k < 3
5
B:

� Both algorithm and optimum rent only, c(ALG(σ)) = c(OPT (σ)) = k.

Case k ≥ B:
� With probability 0.5, the algorithm buys after 3

5
B rounds, with prob. 0.5 it buys after

B − 1 rounds.
� Expected cost is E[c(ALG(σ))] = 1

2

(
3
5
·B +B

)
+ 1

2
(B − 1 +B) < 9

5
·B.

� Cost of the optmimum is c(OPT (σ)) = B. Competitive ratio is at most 9/5 = 1.8.

10 CHAPTER 1. ONLINE OPTIMIZATION

Case 3
5
B ≤ k < B:

� With probability 0.5, the algorithm buys after 3
5
B rounds, with prob. 0.5 it rents for

k rounds.
� Expected cost is E[c(ALG(σ))] = 1

2

(
3
5
·B +B

)
+ 1

2
· k = 4

5
·B + k

2
.

� Cost of optimum is c(OPT (σ)) = k. Competitive ratio is

E[c(ALG(σ))]
c(OPT (σ))

=
4

5
· B
k
+

1

2
≤ 4

5
· 5
3
+

1

2
=

11

6
= 1.83̄

Better randomized algorithms for this problem use a more elaborate random choice for the
buying time. By carefully adjusting the probabilities, one can get a competitive ratio of
(1− 1/e)−1 ≈ 1.58, and this is best possible.

Theorem 4. There is a randomized algorithm for Ski-Rental that is strictly
(
1− 1

e

)−1
-

competitive, and no randomized algorithm is strictly α-competitive for any α <
(
1− 1

e

)−1
.

Finally, let us quickly touch upon randomization in the input (instead of the algorithm).
A simple example to model a randomized input in Ski-Rental is an IID (independent,
identically distributed) model: There is an opening probability 0 ≤ q ≤ 1, which is known
in advance. Every day, nature flips an independent, identical coin with probability q to
determine if the resort can open or remains closed.

Due to randomization in the input, we now have a distribution D over input instances. The
cost of the optimum is a random variable. For the expectation ED[c(OPT (σ))] we consider
the optimal cost for every instance in the distribution, weighted by the probability that this
instance arises, which is given by the distribution D.

Then a randomized algorithm for a minimization problem is (strictly) α-competitive
for input distribution D if we have

ED[c(ALG(σ))] ≤ α · ED[c(OPT (σ)].

The expectation for ALG is both over randomization in the input as well as randomization
in the algorithm, while for OPT it is only over randomization in the input.

Similarly, for a maximization problem, where we want to maxmize the valuation function
v, we call ALG (strictly) α-competitive for input distribution D if we have

ED[v(ALG(σ))] ≥ 1

α
· ED[v(OPT (σ)].

Later in the course, we will also discuss optimal online algorithms, i.e., an algorithm ALG∗

that given an input distribution D generates the smallest expected cost E[ALG∗(σ)]. In
fact, the IID model for Ski-Rental will turn out to be a Markov decision process, and an
optimal algorithm for this process is at follows: If the first open day is on day t, then decide

as follows: If n− t+ 1 ≥
⌊
B−1
q

+ 2
⌋
, then buy; otherwise rent throughout the sequence.

11

Note that the optimal online algorithm still suffers from uncertainty about the future –
it has only probabilistic information about the open days in the future and optimizes the
choice to minimize the expected cost. This is not to be confused with the optimum, which
can always see the entire input instance completely in advance and makes optimal decisions
for each instance in the support of D.

12 CHAPTER 1. ONLINE OPTIMIZATION

Chapter 2

Online Algorithms with
Random-Order Arrival

2.1 The Secretary Problem

In this chapter, we study classes of online problems, in which one tries to find the optimal
time to stop. Usually, there is a sequence of options that arise sequentially, and the goal
is to find the most profitable (feasible combination of) options. This goal is complicated
by the fact that options expire quickly (e.g., investment options in financial markets, or
partner options in dating markets), so usually a decision about option i has to be made
before knowing the profit of subsequent options i+ 1, i+ 2,

2.1.1 OnlineMax Problem

The basic problem: OnlineMax
� Suppose you go on a sequence of n dates, n is known.
� During date i = 1, . . . , n you get to know the quality of the person (a number vi > 0)
� You must decide whether to accept/reject the person before going on the next date(s)
� Accept → person becomes your partner, sequence is over, no more dates.
� Reject → person is hurt and leaves, you go on (i+ 1)-st date (or stay single if i = n)
� Online problem: Decisions are immediate and irrevocable.

Goal: Maximize value of the accepted person.

[Pic: Sequence of Dates]

Online Algorithms and Approximation:
� Suppose ALG is an algorithm that computes a solution to an instance.
� Let v(S) ≥ 0 be the value of a solution S.
� Maximization Problem: Find a solution with value as large as possible.

In OnlineMax...
� The number of dates n is a known parameter
� The input sequence σ composed of values v1, . . . , vn is unknown

13

14 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

Algorithm 1: Optimal Secretary

1 s← ⌊n/e⌋
// Sample phase

2 for rounds t = 1, . . . , s do reject π(t)
// Accept phase

3 for rounds t = s+ 1, . . . , n do
4 if vπ(t) > maxt′<t vπ(t′) or t = n then accept π(t) else reject π(t)

� A solution S corresponds to a single accepted person.
� We set v(S) = vi if S = {i}.

Here is a simple randomized algorithm ALG: Choose a round uniformly at random and
accept the person in that round (independent of its value). Consider the expected value of
the algorithm:

E[v(ALG(σ))] =
n∑

t=1

1

n
· vt ≥

1

n
·max

t
vt =

1

n
· v(OPT (σ)) ,

i.e., the algorithm is (strictly) n-competitive. It turns out this trivial algorithm is essentially
optimal. The following result will be proved later in the course.

Theorem 5. Every randomized algorithm for the OnlineMax problem is Ω(n)-competitive.

This is devastating – the (rather stupid) simple randomized algorithm really appears to be
the best algorithmic idea one can hope for. From a different perspective, this result highlights
a problem of the type of worst-case analysis: We are unable to distinguish between stupid
and more intelligent algorithmic approaches. Using a mild stochastic assumption on the
uncertainty in the instance, such a distinction becomes possible.

2.2 Secretary Problem

In the Secretary problem we assume that dates arrive in uniform random order.
� The number of dates n is a known parameter
� Values v1, . . . , vn are unknown (determined, say, by nature)
� For simplicity: We assume all values vi are distinct
� Arrival order π is chosen uniformly at random
� In round t, you see person π(t) with value vπ(t) and must decide accept/reject

Theorem 6. Algorithm 1 is (e+ o(1))-competitive for the Secretary problem.

Proof. We denote by i∗ the optimal person. We show that the algorithm accepts i∗ with
probability at least 1/e.

� Accept i∗ ⇐⇒ two events happen:
Event At: i

∗ comes in round t ≥ s+ 1, and
Event R(1,t−1): you rejected everyone before

2.2. SECRETARY PROBLEM 15

� The probability that At happens is 1/n. If At happens, then what is the conditional
probability Pr[R(1,t−1) | At]?

[Pic: Arrival, two events]

No accept before?
� We denote by [n] = {1, . . . , n} the set of all people. Consider the set S ⊆ [n] \ {i∗} of
people that arrive in rounds 1, . . . , t− 1. What about the best candidate i∗S in S?

� i∗S comes in a round 1, . . . , s ⇒ reject in all rounds 1, . . . , t− 1.
� i∗S comes in a round s+ 1, . . . , t− 1 ⇒ accept in some round s+ 1, . . . , t− 1.
� Hence: i∗S comes in a round 1, . . . , s ⇐⇒ R(1,t−1)

� Given any set S, it gets permuted in uniform random order over rounds 1, . . . , t − 1.
Hence, the probability that i∗S comes in a round 1, . . . , s is s/(t− 1)

Overall, conditioned on At, for any set S of people arriving in the first t− 1 rounds, we have
Pr[R(1,t−1) | At] = s/(t− 1).

The probability of accepting i∗ can be lower bounded by

n∑
t=s+1

Pr[At] · Pr[R(1,t−1) | At] =
n∑

t=s+1

1

n
· s

t− 1
=

s

n
·
n−1∑
t=s

1

t

≥ s

n
·
(∫ n

t=s

1

t

)
=

s

n
· (lnn− ln s) =

s

n
· ln n

s

=
⌊n/e⌋
n
· ln n

⌊n/e⌋
≥

(
1

e
− 1

n

)
· ln n

n/e
=

1

e
− 1

n
.

[Pic: Sum-to-Integral]

The algorithm always accepts i∗ with probability at least 1/e − 1/n. Hence, the expected
value of the algorithm is at least (1/e − 1/n) · vi∗ . The optimum always accepts i∗, so the
value is vi∗ . The competitive ratio becomes at most

vi∗(
1
e
− 1

n

)
· vi∗

=
e

1− e/n
= e+

e2

n− e
= e+ o(1).

Indeed, this algorithm is the optimal algorithm for the ordinal secretary problem, in which
we want to maximize the probability of accepting the best person.

Theorem 7. Algorithm 1 maximizes the probability to accept the best person.

Proof. We again use i∗ to denote the best person, and it the person arriving in round t. it
is determined by the uniform random order. In each round t we define two events:

Bt: it ist the best person seen so far.
Nt: it ist not the best person seen so far.

16 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

Note:

Pr[it = i∗ | Nt] = 0. Pr[it = i∗ | Bt] =
t

n
.

Observations:
� If Nt, then it not the best one so far, so it cannot be i

∗.
� If Bt, then it is the best one so far. When is the best one from the first t rounds also
the globally best one? If and only if i∗ comes in the first t rounds! The probability for
this is t/n.

� When should we accept? If Nt, then we never accept!
� If Bt, then we should accept if the chances are low that a better person comes later
on. This is true late in the process, but not early on.

An optimal algorithm only uses information on n, t, Bt and Nt for the decision in
round t. Other information (e.g. about values seen so far) do not matter (why?).

Let us consider the following probabilities:
� vt: probability we accept i∗ in some round t, t+1, . . . , n after Nt happened in round t.
� ut: probability we accept i∗ in some round t, t+1, . . . , n after Bt happened in round t.

We optimize our algorithm and try to make all ut and vt as large as possible. We proceed
backwards in time using a backwards iteration:

� Consider round t = n.
If Bn happens, then in = i∗. We accept and get un = 1. If Nn happens, then we never
get i∗. Hence, vn = 0.

� Consider round t = n− 1.
If Bn−1, then Pr[in−1 = i∗ | Bn−1] =

n−1
n
.

→ if we accept, then we get i∗ with prob. (n− 1)/n.
→ if we reject, then Pr[Bn | Bn−1] =

1
n
and Pr[Nn | Bn−1] =

n−1
n
. The probability that

i∗ comes in round n (and gets accepted there) becomes

vn ·
n− 1

n
+ un ·

1

n
.

Thus,

un−1 = max

(
n− 1

n
, vn ·

n− 1

n
+ un ·

1

n

)
=
n− 1

n
·max

(
1, vn + un ·

1

n− 1

)
=
n− 1

n
·max

(
1,

1

n− 1

)
=
n− 1

n
.

Hence, if Bn−1, we should accept in round n− 1.

2.2. SECRETARY PROBLEM 17

If we see Nn−1, then we certainly do not obtain i∗ in round n − 1. Hence, we should
reject, since we might get i∗ in the final round n. Note Pr[Bn | Nn−1] = 1

n
and

Pr[Nn | Nn−1] =
n−1
n
, and therefore

vn−1 = vn ·
n− 1

n
+ un ·

1

n

=
1

n

=
n− 1

n
·
(

1

n− 1

)
.

� Consider round t = n− 2.
If we see Bn−2, then Pr[in−2 = i∗ | Bn−2] =

n−2
n
.

→ if we accept, then we get i∗ with prob. (n− 2)/n.
→ if we reject, then Pr[Bn−1 | Bn−2] =

1
n−1

and Pr[Nn−1 | Bn−2] =
n−2
n−1

. The probability
that we can accept i∗ in round n− 1 or n becomes

vn−1 ·
n− 2

n− 1
+ un−1 ·

1

n− 1
.

Thus,

un−2 = max

(
n− 2

n
, vn−1 ·

n− 2

n− 1
+ un−1 ·

1

n− 1

)
=
n− 2

n
·max

(
1, vn−1 ·

n

n− 1
+ un−1 ·

n

(n− 1)(n− 2)

)
=
n− 2

n
·max

(
1,

1

n− 1
+

1

n− 2

)
=
n− 2

n

Hence, if Bn−1, we should accept in round n− 2.

If we see Nn−2, then we certainly do not obtain i∗ in round n − 2. Hence, we should
reject, since we might get i∗ in round n − 1 or n. Note Pr[Bn−1 | Nn−2] =

1
n−1

and

Pr[Nn−1 | Nn−2] =
n−2
n−1

, and therefore

vn−2 = vn−1 ·
n− 2

n− 1
+ un−1 ·

1

n− 1

=
n− 2

n(n− 1)
+

1

n

=
n− 2

n
·
(

1

n− 1
+

1

n− 2

)
.

� For round t = n− 3, n− 4, n− 5, . . . we can show by induction:

ut =
t

n
·max

(
1,

1

n− 1
+

1

n− 2
+ . . .+

1

t

)
vt =

t

n
·
(

1

n− 1
+

1

n− 2
+ . . .+

1

t

)

18 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

In this way, we obtain an optimal algorithm:

� If Nt, we never want to accept the current person.
� If Bt for large t (late in time) such that

1

n− 1
+

1

n− 2
+ . . .+

1

t
=

n−1∑
i=t

1

i
< 1 ,

it is optimal to accept the current (= best so far) person.
� If Bt for small t (early in time), then

1

n− 1
+

1

n− 2
+ . . .+

1

t
=

n−1∑
i=t

1

i
> 1 .

Here it is optimal to reject and wait for later round and better people.
� The optimal threshold value r is given by

n∑
i=s

1

i
≥ 1 and

n∑
i=s+1

1

i
≤ 1 .

By using an integral to approximate the sum, one can show that s = ⌊n/e⌋. Thus, the
optimal algorithm is, indeed, Algorithm 1.

2.3 Secretary Matching

The Secretary problem seems neat, but a little abstract, and the random-order assumption
a bit unrealistic. Still, the problem has received an enourmous attention in the literature
since the first (rigorous) consideration in the 1960s.

Recently, there are many applications in online advertising and sponsored search,
which nowadays is a multi-billion-dollar market. In this scenario, there is a search engine
like Google and a set of advertisers, who want to show advertisements on search result pages.
When a search query arrives, the engine assigns an ad on the result page. Depending on
the query, showing a particular ad might be more or less valuable (to the advertiser, the
company running the search engine, or the user).

This is essentially an online problem: Given an advertiser and an online sequence of
search queries, find the best query to display the ad on the result page. Given the extreme
amount of search queries per minute, random-order arrival is not unrealistic.

As a more elaborate approach for the search application, we study Secretary Matching:
� G = (L ∪R,E) is a bipartite graph
� Right set R of nodes known in advance (advertisers)
� Left set L of nodes arriving in uniform random order (search queries)
� Each edge e ∈ E has a value ve ≥ 0

2.3. SECRETARY MATCHING 19

Algorithm 2: Bipartite Secretary Matching

1 s← ⌊n/e⌋
// Sample phase

2 L0 ← ∅
3 for rounds t = 1, . . . , s do Lt ← Lt−1 ∪ {ℓt}
// Accept phase

4 M ← ∅
5 for rounds t = s+ 1, . . . , n do
6 Lt ← Lt−1 ∪ {ℓt}
7 Et ← E ∩ (Lt ×R)
8 Compute a Max-Weight-Matching M∗,t in Gt = (Lt ∪R,Et)
9 if ℓt is matched in M∗,t then et ← (ℓt, r) ∈M∗,t; else et ← ∅

10 if r unmatched in M then add et to M

11 return M

� Upon arrival, a node ℓ ∈ L reveals its’ incident edges to R and their values

[Pic: Sponsored search, Bipartite Matching Model]

We solve Secretary Matching using Algorithm 2. It is an extension of the standard
algorithm for the secretary problem. After the sampling phase, the algorithm computes in
every round t = s + 1, . . . , n an optimal matching M∗,t in the graph Gt of all the arrived
vertices and edges – independent of any matching edges chosen in previous rounds. The
algorithm only cares about the current vertex ℓt and the matching edge (ℓt, r) ∈ M∗,t. If ℓt
is unmatched in M∗,t, the algorithm simply does nothing. Now if the vertex in r ∈ R is still
unmatched in M , then we add (ℓt, r) to M ; otherwise, the algorithm does nothing.

[Pic: One round of the algorithm]

Theorem 8. Algorithm 2 is (e+ o(1))-competitive for Secretary Matching.

Consider any fixed round t = s + 1, . . . , n. For the sake of the analysis, assume that set
Lt and vertex ℓt are the result of a simulation:

1. Draw Lt as a random subset from L. Each vertex ℓ ∈ L has Pr[ℓ ∈ Lt] = t/n.
2. Draw ℓt as a random vertex from Lt. Each vertex ℓ ∈ Lt has Pr[ℓ = ℓt] = 1/t.

In this simulation, each subset of t nodes from L has the same probability to become Lt, and
every vertex ℓ ∈ L has the same probability to become ℓt. As such, the simulation produces
the same distribution for Lt and ℓt as our random-order permutation.

Now consider round t. The random edge et, as defined in line 9 of the algorithm, is the only
edge we consider for addition to M in round t. Note that et might be an empty edge if ℓt is
unmatched in M∗,t. How valuable is this et?

Lemma 1. For every given round t = s+ 1, . . . , n, we have E[v(et)] ≥ v(M∗)/n.

Proof. We use the simulation:

20 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

� In step 1 of the simulation, we determine Lt. Note: This fully determines M∗,t!
� Edge e = (ℓ, r) ∈M∗,t becomes et ⇔ ℓ is chosen to be ℓt in step 2 of the simulation.
� Hence, every edge e ∈M∗,t has probability 1/t to become et. This implies that et has
“average” value of M∗,t

E[v(et) | Lt] =
1

t
· v(M∗,t) .

[Pic: simulation, choice of ℓt determines et]

Now how does the matching M∗,t relate to the optimal matching M∗?
� Consider Gt. The set Lt of vertices in rounds 1, . . . , t is a random sample from L.
� Hence, for each ℓ ∈ L we have Pr[ℓ ∈ Lt] = t/n.
� Let M t = Et ∩ M∗ = {(ℓ, r) ∈ M | ℓ ∈ Lt} be the set of edges from the optimal
matching that exist in Gt.

� For every (ℓ, r) ∈M∗ we have Pr[(ℓ, r) ∈M t] = Pr[ℓ ∈ Lt] = t/n. Hence,

E[v(M t)] =
t

n
· v(M∗)

� Now, clearly, since M∗,t is the optimal matching in Gt, it is better than M
t:

v(M∗,t) ≥ v(M t) .

� This implies that E[v(et)] ≥ v(M∗)/n:

E[v(et)] =
∑
Lt⊆L

t

n
· E[v(et) | Lt] =

∑
Lt⊆L

t

n
· 1
t
· v(M∗,t)

≥ 1

t
·
∑
Lt⊆L

t

n
· v(M t) =

1

t
· E[v(M t)] =

1

t
· t
n
· v(M∗) =

v(M∗)

n
.

[Pic: M∗ restricted to Gt vs. M
∗,t]

Now every time we add edge et toM , we increase the value ofM in expectation by v(M∗)/n.
How likely is it that we can add et to M? We prove a general upper bound on this success
probability. Our bound holds for every realization of et, i.e., no matter which edge
et turns out to be.

Lemma 2. For every round t = s + 1, . . . , n the success probability is at least s/(t − 1),
independent of the realization of edge et.

Proof. Consider the simulation and fix a choice for set Lt and vertex ℓt ∈ Lt.
� This fixes M∗,t and et = (ℓt, r), i.e., it also fixes r ∈ R.
� We bound the success probability ps(et, Lt) that a given edge et can be added to M in
round t given that a particular set Lt arrives in the first t rounds.

� Consider the previous round t− 1. Let Bt−1 be the event that et−1 = (ℓt−1, r).

2.4. ITEM ALLOCATION IN MARKETS 21

� We extend the simulation: Determine vertex ℓt−1 by random draw from Lt−1 = Lt\{ℓt}.
Conditioned on Lt and ℓt, this is equivalent to getting ℓt−1 from random-order arrival.

� Consider M∗
t−1. There is at most one vertex from Lt−1 matched to r in M∗

t−1.
� Thus, Bt−1 happens with probability at most 1/(t− 1).
� Suppose it does not happen, i.e., condition on ¬Bt−1 and proceed:
Determine ℓt−2 by random draw from Lt−2 = Lt \{ℓt, ℓt−1}. Conditioned on Lt, ℓt, ℓt−1

and not Bt−1, this is equivalent to getting ℓt−2 from random-order arrival.
� Consider M∗

t−2. There is at most one vertex from Lt−2 matched to r in M∗
t−2. Thus,

Bt−2 happens with probability at most 1/(t− 2).
� The argument can be repeated for all rounds k < t.

[Pic: Backwards simulation of ℓt, ℓt−1, etc.]

If one of the events Bk happens for k = s+ 1, . . . , t− 1, then we add some edge incident to
r into M in one of these rounds. Note that for k ≤ s we never add edges to M . Overall, et
can be added to M if and only if none of the events Bk happens, for all k = s+ 1, . . . , t− 1.
The success probability is

ps(et, Lt) = Pr

[
t−1∧

k=s+1

¬Bk

]
≥

t−1∏
k=s+1

(
1− 1

k

)
=

s

s+ 1
· s+ 1

s+ 2
· · · t− 2

t− 1
=

s

t− 1
.

Proof of Theorem 8. We now combine the previous lemmas to prove the theorem.
� By Lemma 1, the expected value of edge et in round t is E[v(et)] ≥ v(M∗)/n.
� By Lemma 2, for every realization of et and Lt, the success probability is at least
ps(et, Lt) ≥ s/(t− 1).

� We denote by vt the contribution of round t to v(M). Combining the lemmas yields

E[vt] = E[v(et) · ps(et, Lt)] = E[v(et)] ·
s

t− 1
≥ v(M∗)

n
· s

t− 1
.

� By linearity of expectation, the expected value of v(M) can be bounded by

E[v(M)] = E

[
n∑

t=s+1

vt

]
=

n∑
t=s+1

E[vt] ≥ v(M∗) ·
n∑

t=s+1

1

n
· s

t− 1
.

This leads to the same expression that we bounded in the end of the proof of Theorem 7.
Repeating the analysis (using v(M∗) instead of vi∗) yields the same competitive ratio.

2.4 Item Allocation in Markets

A fundamental problem in (Internet) markets is the allocation of indivisible goods and ser-
vices to a set of agents or users. Given a number of item (access rights, hardware, etc.),
which user should receive which item? A standard objective in this context is social welfare
– maximize the sum of valuations of the users for their respective assigned bundle of items.

22 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

Can we obtain good algorithms to compute allocations of goods and services to users that
maximize social welfare? What if users arrive online over time to the market?

Formally, we study the following Item Allocation problem:
� There is a set L of n users and a set R of m items
� Each user ℓ ∈ L has a valuation vℓ(S) ≥ 0 for every subset S ⊆ R of items.
� Allocation S = (S1, . . . , Sn) of goods to users with Si ⊆ R and Si ∩Sj = ∅ for all i ̸= j
� Goal: Find an allocation to maximize social welfare SW (S) =

∑
ℓ∈L vℓ(Si).

� We use S∗ = (S∗
1 , . . . , S

∗
n) to denote an optimal allocation.

The model in the previous section can be seen as a special case of unit-demand valuations
– each user in ℓ ∈ L wants to have at most one item (i.e., wants to be matched to at most
one vertex from R). Here we assume that each user ℓ ∈ L may get assigned more than one
item from R, depending on her valuation vℓ.

In general, Item Allocation is an NP-hard problem, even in the offline variant where all
users and items are known in advance. More severely, it is even NP-hard to approximate
within any factor of n1−ε, for every constant ε > 0.

We consider Item Allocation as an online problem parametrized by the size d of the
largest bundle of items that any user is interested in – no user wants more than d items.
Moreover, we analyze the impact of more supply – what if every item is available in b ≥ 1
copies?

Item Allocation with bundles of size at most d and item multiplicity b
� For every user ℓ ∈ L we have vℓ(Sℓ) = 0 whenever |Sℓ| > d
(no user wants a bundle of size > d)

� For every item r ∈ R there are b ≥ 1 copies.

This problem can be formulated using the following integer linear program (ILP):

Maximize
∑
ℓ∈L

∑
S⊆R
|S|≤d

xℓ,Svℓ(S)

subject to
∑
S⊆R
|S|≤d

xℓ,S ≤ 1 ∀ℓ ∈ L

∑
ℓ∈L

∑
S⊆R
|S|≤d
r∈S

xℓ,S ≤ b ∀r ∈ R

xℓ,S ∈ {0, 1} ∀ℓ ∈ L, S ⊆ R, |S| ≤ d.

(2.1)

Consider the linear relaxation:
� We replace the last constraints xℓ,S ∈ {0, 1} by 0 ≤ xℓ,S ≤ 1.
� Thereby we obtain a linear relaxation with fractional xℓ,S.
� This allows to obtain more social welfare in the optimum.

2.4. ITEM ALLOCATION IN MARKETS 23

Algorithm 3: Item Allocation with Bundles of Size ≤ d and Item Multiplicity b

1 s← ⌊n · e(2d)1/b/(1 + e(2d)1/b)⌋
// Sample phase

2 L0 ← ∅
3 for rounds t = 1, . . . , s do Lt ← Lt−1 ∪ {ℓt} and Sℓt ← ∅
// Accept phase

4 for rounds t = s+ 1, . . . , n do
5 Lt ← Lt−1 ∪ {ℓt}
6 Solve LP (2.2), let x∗,t be the optimal fractional solution

7 Round Sℓt to S with probability x∗,tℓt,S
, for every bundle S ⊆ R, |S| ≤ d.

8 if in (Sℓ1 , . . . , Sℓt) any item gets allocated more than b times then Sℓt ← ∅
9 return S = (S1, . . . , Sn)

� Let x∗ an the optimal solution for the linear relaxation.
� SW (x∗) is an upper bound for our optimal social welfare: SW (x∗) ≥ SW (S∗).

Clearly, if we can design an approximation algorithm with a competitive ratio against
SW (x∗), then it also obtains at most this ratio against SW (S∗). But can we even com-
pute x∗ in polynomial time? This is not obvious, since the program has n ·

(
m
d

)
coefficients

and variables in the objective function. For simplicity, let us assume d is a constant1. Then
the size of the program becomes polynomial O(n ·

(
m
d

)
) = O(nmd).

Algorithm 3 solves the online version of Item Allocation, in which users arrive se-
quentially in random order. It extends the idea of Algorithm 2 and rejects the first s users.
Afterwards, in every round t it solves the linear relaxation of ILP (2.1) for the set Lt of users
arrived until round t and all items R, i.e., it solves the linear program (LP)

Maximize
∑
ℓ∈Lt

∑
S⊆R
|S|≤d

xℓ,Svℓ(S)

subject to
∑
S⊆R
|S|≤d

xℓ,S ≤ 1 ∀ℓ ∈ Lt

∑
ℓ∈Lt

∑
S⊆R
|S|≤d
r∈S

xℓ,S ≤ b ∀r ∈ R

xℓ,S ∈ [0, 1] ∀ℓ ∈ Lt, S ⊆ R, |S| ≤ d.

(2.2)

Since a feasible solution x must satisfy the first set of constraints, we can interpret the entries
xℓ,S for a fixed user ℓ as a probability distribution over possible bundles S ⊆ R, |S| ≤ d.
The algorithm uses randomized rounding to determine a candidate bundle Sℓt . If all items

1If d is non-constant, the program can also be solved in polynomial time under the condition that the
valuations are given implicitly using an oracle that answers certain types of queries about the most preferred
bundle.

24 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

in Sℓt are still available (i.e., the bundles Sℓ1 , . . . , Sℓt−1 have not exhausted any r ∈ Sℓt), we
include Sℓt into the allocation; otherwise ℓt gets nothing.

Theorem 9. Algorithm 3 is O(d1/b)-competitive for Item Allocation with bundles of size
≤ d and item multiplicity b.

Consider the competitive ratio.
� It decreases as b grows larger. This is intuitive, since the more copies per item are
available, the less severe is a “mistake” when we give an item to a suboptimal user.

� On the other hand, the ratio decreases as d grows smaller. Again, this is natural, since
assigning smaller bundles decreases the effect on other users who might be excluded
from the solution due to the lack of items. Also, note the hardness results for the
general problem (with d = n) – hence, for large d we cannot hope for good performance
guarantees.

Similar effects are present in the length of the sampling phase:
� If b grows larger, the expression (2d)1/b becomes smaller, and so does s. Clearly, if
more copies are available, less waiting and sampling is needed, since the effect of a
wrongly assigned item is much less severe.

� If d grows larger, (2d)1/b becomes larger, and so does s. Assigning larger bundles can
be harmful when we have many remaining agents. The algorithm must be more careful
and accumulates users in the sample, such that when it allocates an item, it has more
substantial evidence that this decision is indeed a good idea.

We proceed to prove the theorem. The proof follows along the lines of the proof of Theorem 8:
Study each fixed round t = s+ 1, . . . , n separately and prove

� a lower bound on the expected value of E(vℓt(Sℓt)] in terms of SW (x∗)
� a lower bound on the success probability that none of the items in Sℓt is exhausted.

We here use the fractional optimum x∗ as reference. By combining the bounds, we get
a lower bound on the expected contribution of each round to E[SW (S)]. By linearity of
expectation, this implies a lower bound on E[SW (S)] and, thus, a bonud on the competitive
ratio in terms of SW (x∗).

For a fixed round t, we again use the simulation to mimic random-order arrival:
� Draw Lt as a random subset of L, then draw ℓt randomly from Lt.
� Remove ℓt from Lt to obtain Lt−1, then draw ℓt−1 randomly from Lt−1

� Repeat to determine ℓt−2, ℓt−3, . . .

Lemma 3. For every round t = s+ 1, . . . , n we have E[vℓt(Sℓt)] ≥ SW (x∗)/n.

This lemma can be proved completely analogously as Lemma 1. We reiterate the argument
for completeness.

Proof. Consider round t.
� Suppose we have chosen Lt. This also determines x∗,t and SW (x∗,t).
� Now every ℓ ∈ Lt has probability 1/t to become ℓt.
� Then every set S then is chosen to be Sℓt with probability x∗,tℓt,S

.

2.4. ITEM ALLOCATION IN MARKETS 25

� This shows

E[vℓt(Sℓt) | Lt] =
∑
ℓ∈Lt

1

t

∑
S⊆R

x∗,tℓ,S · vℓ(S) =
1

t
· SW (x∗,t)

Now how large is SW (x∗,t)?
� Let xtℓ,S = x∗ℓ,S for ℓ ∈ Lt and x

t
ℓ,S = 0 otherwise.

� xt restricts the optimum x∗ to entries for Lt. Note: x
t is a feasible solution for LP (2.2).

� For each ℓ ∈ L we have Pr[ℓ ∈ Lt] = t/n. Thus,

E[SW (xt)] =
∑
ℓ∈L

∑
S⊆R

xtℓ,Svℓ(S) =
∑
ℓ∈L

t

n

∑
S⊆R

x∗ℓ,Svℓ(S) =
t

n
· SW (x∗)

� Since x∗,t is the optimal feasible solution to LP (2.2):

SW (xt,∗) ≥ SW (xt).

� As a consequence, we see that E[vℓt(Sℓt)] ≥ SW (x∗)/n:

E[vℓt(Sℓt)] =
∑
Lt⊆L

t

n
· E[vℓt(Sℓt) | Lt] =

∑
Lt⊆L

t

n
· 1
t
· SW (x∗,t)

≥ 1

t

∑
Lt⊆L

t

n
· SW (xt) =

1

t
· E[SW (xt)] =

1

t
· t
n
· SW (x∗) =

SW (x∗)

n
.

Lemma 4. For every round t = s+ 1, . . . , n, the success probability is at least

1− d ·
(
e(n− s)

s

)b

,

independent of the realization of bundle Sℓt.

Proof. We have to bound the probability that all items are still available, i.e., each item
r ∈ Sℓt occurs at most b− 1 times in the bundles Sℓ1 , . . . , Sℓt−1 .

� Fix a choice of Lt, the user ℓt , his chosen set Sℓt .
� Consider an item r ∈ Sℓt . We again proceed backwards from round t to s+ 1.
� Consider the simulation. In every round k ≤ t − 1, once we have obtained Lk, we
can assume that all remaining users ℓ ∈ Lk choose a tentative set Sk

ℓ according to the
probabilities x∗,k.

� Then if a user ℓ is drawn from Lk to become ℓk, his set S
k
ℓ becomes Sℓk .

� Indeed, since the rounding choice of S for each user and the random choice of ℓk are
independent decisions, it doesn’t matter if ℓ chooses his set before or after he is chosen
to become ℓk.

� Now consider the probability that item r is in Sℓk :

Pr[r ∈ Sℓk] =
∑
ℓ∈Lk

Pr[ℓ = ℓk] · Pr[r ∈ Sk
ℓ] =

1

k
·
∑
ℓ∈Lt

∑
S⊆R,r∈S

x∗,kℓ,S ≤
b

k

where the last inequality comes from the fact that x∗,t fulfills the second set of con-
straints in LP 2.2.

26 CHAPTER 2. ONLINE ALGORITHMS WITH RANDOM-ORDER ARRIVAL

Hence, in each round, the probability that r is chosen is only b/k. What is the probability
that r is not chosen b times in the rounds s+ 1, . . . , t− 1?

Pr[r in at least b bundles] ≤
∑

C⊆{s+1,...,t−1}
|C|=b

(∏
k∈C

b

k

)
≤
(
t− 1− s

b

)(
b

s

)b

.

A general bound on binomial coefficients (n/k)k ≤
(
n
k

)
≤ (e · n/k)k comes in handy:

Pr[r in at least b bundles] ≤
(
t− 1− s

b

)(
b

s

)b

≤
(
e(t− 1− s)

s

)b

≤
(
e(n− s)

s

)b

.

Note that |Sℓt| ≤ d. The probability that at least one item in Sℓt is chosen b times in previous

rounds (i.e., the failure probability) is (by a union bound) at most d ·
(

e(n−s)
s

)b
. The lemma

follows.

Proof of Theorem 9. We combine the previous lemmas to prove the theorem.
� By Lemma 3, the expected value of bundle Sℓt in round t is E[vℓt(Sℓt)] ≥ SW (x∗)/n.
� By Lemma 4, for every realization of Sℓt and Lt, the success probability is at least

1− d
(
e(n− s)

s

)b

.

� We denote by vt the contribution of round t to SW (S). Combining the lemmas yields

E[vt] ≥
SW (x∗)

n
·

(
1− d ·

(
e(n− s)

s

)b
)

.

By linearity of expectation, the expected value of SW (S) can be bounded by

E[SW (S)] =
n∑

t=s+1

E[vt] ≥ SW (x∗) · n− s
n
·

(
1− d ·

(
e(n− s)

s

)b
)

Substituting s into the expression, we notice that for large n, the rounding ⌊. . .⌋ in s only
causes a negligible change overall:

E[SW (S)] ≥ SW (x∗) ·

(
1

1 + e(2d)1/b
·

(
1− d ·

(
e

e(2d)1/b

)b
)
− o(1)

)

= SW (x∗) ·
(

1

1 + e(2d)1/b
·
(
1− d

2d

)
− o(1)

)
≥ SW (x∗) ·

(
1

2 + 4ed1/b
− o(1)

)
≥ SW (S∗) ·

(
1

2 + 4ed1/b
− o(1)

)
.

This proves the theorem.

Chapter 3

Online Algorithms with Distributions

3.1 Prophet Inequalities

Let us reconsider the OnlineMax problem. Here we consider a slightly different and,
arguably, more natural form of uncertainty. Instead of completely unknown values and
random order, we now have probability distributions D1, . . . ,Dn for the rounds. The
value of the person in round t is drawn independently from Dt.

The basic challenge is the same: Should we accept a person now or wait for a better one?
In random order models, a sample phase was useful to gain conditional information about
future rounds. Now we have direct stochastic information about the future rounds.

The consideration of this scenario is older than competitive analysis, and the terminology
is often slightly different: The offline optimum OPT is called a “prophet” who knows the
future. The algorithm ALG is a gambler who wants to approximate the expected value of
the prophet. Hence, we can see the definition of competitive ratio as a “prophet inequality”,
relating the performances of gambler (algorithm) and prohpet (optimum).

In the Prophet problem we assume that
� The number of dates n is a known parameter
� Distribution Dt is known for each round t = 1, . . . , n (no random order)
� Value vt drawn independently from Dt

� In round t, you see realization vt. Decide accept/reject before seeing the next value(s)

3.1.1 Independent Distributions

Consider Algorithm 4. Instead of sampling, it computes τ as half of the expected value of
OPT. It uses τ as acceptance threshold and accepts the first person with value at least τ .
We will show that this yields at least τ as expected value of the algorithm.

This is noteworthy, since there might be a chance that the algorithm accepts nobody.
Then, however, the result implies that there must also be a good probability that accepted
people are significantly better than τ .

Theorem 10. Algorithm 4 is 2-competitive for the Prophet problem.

Proof. Consider the expected value of Algorithm 4.

27

28 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

Algorithm 4: Prophet Approximation

1 Compute the expected optimum value: v∗ ← E[maxnt=1 vt]
2 Set τ = v∗/2
3 for rounds t = 1, . . . , n do
4 if vt ≥ τ then accept person t; else reject person t

� q is the probability that nobody is accepted: q = Pr[v1 < τ ∧ . . . ∧ vn < τ]
� Let At be the event that the algorithm accepts in round t.
� These events are mutually disjoint.
� For each t, we define ut = vt − τ when At happens, and ut = 0 otherwise.
� The expected value of the algorithm is

n∑
t=1

E[vt | At] · Pr[At] =
n∑

t=1

E [ut + τ | At] · Pr[At] =
n∑

t=1

E [ut | At] · Pr[At] +
n∑

t=1

τ · Pr[At]

=
n∑

t=1

E [ut] + (1− q)τ (3.1)

An economic interpretation:
� τ is the price of our car
� Every round t a person with value vt comes up
� The first one that has value vt ≥ τ buys the car. Buyer t’s utility is vt.
� Our revenue is τ if anyone buys, so expected revenue is (1− q)τ

We use 1x to denote 0/1 indicator variables that are 1 if and only if x is true. Now for every
round t, we have

ut = max{vt − τ, 0} · 1v1<τ∧...∧vt−1<τ ,

By independence,

E[ut] = E[max{vt − τ, 0} · 1v1<τ∧...∧vt−1<τ]

= E[max{vt − τ, 0}] · Pr[v1 < τ ∧ . . . ∧ vt−1 < τ]

≥ E[max{vt − τ, 0}] · q ,

Now

n∑
t=1

E [ut] ≥
n∑

t=1

E [max{vt − τ, 0}] · q shown above

= E

[
n∑

t=1

max{vt − τ, 0}

]
· q linearity of expectation

≥ E
[

n
max
t=1

max{vt − τ, 0}
]
· q since

∑
i

xi ≥ max
i
xi when all xi ≥ 0.

≥ E
[

n
max
t=1

vt − τ
]
· q adding negative values when all vt < τ

3.1. PROPHET INEQUALITIES 29

=
(
E
[

n
max
t=1

vt

]
− τ
)
· q linearity of expectation (again)

= (v∗ − τ) · q

where the second line uses linearity of expectation, and the third line uses
∑

i xi ≥ maxi xi
for all non-negative numbers xi ≥ 0.
We now use this bound in (3.1). We plug in our choice τ = v∗/2 and see that the expected
value of the algorithm is at least

n∑
t=1

E [ut] + (1− q)τ ≥ (v∗ − τ) · q + (1− q)τ = (v∗ − v∗/2) · q + (1− q)v∗/2

= v∗/2 = τ,

no matter what q is.

Note that this guarantee cannot be improved in general.

Example 1. Suppose you have n = 2 rounds. In the first round, v1 = 1 with probability
1. In the second round, v2 = 0 with probability 1− ε, and v2 = 1/ε with probability ε > 0.
Intuitively, in the first round the gambler gets 1e for sure. In the second round, there is
a tiny chance one wins a huge amount in the lottery, but usually one gets nothing. The
gambler can decide to take the 1e or wait. No matter what he does, however, the expected
value is 1.

In contrast, the prophet knows in advance whether or not there is a lottery win in round
2. In that case (happens with probability ε) she waits for round 2. Otherwise (happens with
probability 1− ε) she takes the 1e in round 1. The expected value of the prophet is, thus,
1/ε · ε+ 1 · (1− ε) = 2− ε. Hence, gambler and prophet differ by a factor that is arbitrarily
close to 2. ■

3.1.2 IID

We show an improved result for the IID scenario, when the value of each person is drawn
i.i.d. (independent, identically distributed) from the same distribution D.

Consider Algorithm 5. The (1−1/n)-quantile is the value such that Pr[v1 ≤ t] = 1−1/n.
The algorithm collects all values of at most the (1 − 1/n)-quantile in R and rejects them.
Conversely, it accepts the first person with a value above the (1− 1/n)-quantile.

Since D is discrete, there can be (at most) one value r′, such that Pr[v1 < r′] < 1− 1/n
and Pr[v1 ≤ r′] > 1 − 1/n. When such an r′ exists, there is no (1 − 1/n)-quantile. Then
the algorithm internally gives any person with value r′ a random label h or l. This splits r′

into two values (r′, h) and (r′, l), where (r′, h) should be accepted and (r′, l) rejected. The
probability for (r′, l) in line 10 is chosen exactly such that Pr[(v1 < r′) ∨ (v1 = (r′, l))] =
1− 1/n. In this way, (r′, l) acts as the (1− 1/n)-quantile.

[Pic: Discrete distribution, (1− 1/n)-quantile, split of value r′ into two values]

The algorithm has a competitive ratio of (1− 1/e)−1 ≈ 1.58.

30 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

Algorithm 5: IID-Prophet Approximation

1 Notation: qr = Pr[v1 = r].
2 Sort support SD = {r | qr > 0} in non-decreasing order
3 x← 0, i← 0, R← ∅
4 while i < |SD| and x < 1− 1/n do
5 x← x+ qri
6 if x ≤ 1− 1/n then R← R ∪ {ri}; else r′ ← ri
7 i++

8 for rounds t = 1, . . . , n do
9 if vt ∈ R then reject person t

10 else if vt = r′ then reject person t with probability (1− 1/n− (x− qr′))/qr′
11 else accept person t

Theorem 11. Algorithm 5 is (1−1/e)−1-competitive for the Prophet problem with identical
distributions.

Proof. Consider the event E that a person is accepted by the algorithm.
� Values are drawn independently across rounds, the labels l, h for r′ are also assigned
independently each round.

� The probability that a person is rejected in round i is

Pr[vt ∈ R ∪ {(r′, l)}] =
∑
r∈R

qr + qr′ ·
1− 1/n− (x− qr′)

qr′

=
∑
r∈R

qr + 1− 1

n
−

(∑
r∈R

qr

)
= 1− 1

n
.

� Hence, Pr[E] = 1− Pr[¬E] = 1−
∏n

t=1

(
1− 1

n

)n ≥ 1− 1
e
.

Condition on E, and suppose k ≥ 1 persons are above the (1− 1/n)-quantile.
� Let F be the set of k rounds with persons above the (1− 1/n)-quantile.
� We accept the person in the first round from F . Is this person special?
� Does the condition t = min{j ∈ F} change the expected value of vt? Or is it just
E[v | (v > r′) ∨ (v = (r′, h))] = E[vt | vt above (1− 1/n)-quantile]?

Simulation: Draw n values from D and assign them in random order to the n rounds.
� The permutation has no effect on the distribution or the independence.
� First value above the (1− 1/n)-quantile is a uniform random one from the k values.
� Hence: First person above the the (1− 1/n)-quantile is not special!
� Any accepted person has expected value E[vt | vt above (1− 1/n)-quantile].

Consider the distribution of the optimal person.1

1If several persons have optimal value, break ties uniformly at random: Label a random person as optimal
and the rest suboptimal.

3.2. MARKOV DECISION PROCESSES 31

� By simulation: Each round the person is optimal with probability 1/n.
� Both events “vt optimal” and “vt above (1− 1/n)-quantile” have probability of 1/n in
each round.

� Above the (1−1/n)-quantile are the best realizations that make up a probability mass
of 1/n. Hence,

E[vt | vt above (1− 1/n)-quantile] ≥ E[vt | vt optimal] .

In case of event E, the accepted person has expected value better than the expected value of
the optimum. However, event E occurs only with a probability of 1−(1−1/n)n ≥ 1−1/e.

This is not the best algorithm for identical distributions. If D is continuous, there is an
algorithm with a ratio approximately 1/0.745 = 1.342, and there is a distribution for which
this ratio cannot be improved.

3.2 Markov Decision Processes

The OnlineMax problem with distributions is a special case of a general framework of
stochastic optimization problems. For exposition, our running example in this section will
be a slightly simpler PrizeCollection problem:

� There are n envelopes. With probability pi ∈ [0, 1], envelope i contains a prize of value
vi > 0. Otherwise, it is empty and has value 0.

� You open all envelopes in arbitrary order. You keep all prizes as long as you do not
open an empty envelope.

� Once you open an empty envelope, you stop earning prizes from future envelopes.

Intuitively, starting with the envelopes that contain highest prizes or largest expected value
seems like a good idea. However, there are examples where this strategy fails miserably:
Suppose we have one envelope with v1 = 1000 and p1 = 0.01, and then 99 others with
vi = pi = 1 for i = 2, . . . , 100. If we open envelope 1 first, then with probability 0.99 the
evenlope is empty and we get nothing – whereas with probability 0.01 we can continue and
collect all prizes of total value 1099. Overall, this yields an expected value of 10.99. Clearly,
the optimal strategy here would be to open only the envelopes 2, . . . , 100, by which we secure
a value of 99.

PrizeCollection is an example of a Markov Decision Process (MDP), where we have
� a set S of states, with an initial state sinit ∈ S, and a set A of actions,
� a reward ra(s) for taking action a in state s, for all a ∈ A, s ∈ S, and
� a probability pa(s, s

′) to move from s to s′ after taking action a, for all a ∈ A, s, s′ ∈ S.

In round 1 we start in state s1 = sinit. We choose some action a and receive reward ra(s1).
After getting the reward, we transition to some other state s2 drawn independently at random
according to pa(s1, ·). Then we choose the next action, and so on.

Some observations:
� State st only depends on state and action in round t, but not on other parts of the
history – this property of the process is called Markovian.

32 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

� Rewards might be stochastic (as in our example), then ra(s) is the expected reward.
� The model generalizes finite state automata (when the pa(s, s

′) are either 0 or 1) and
Markov chains (when there is only a single action).

PrizeCollection as MDP:
� Let [n] = {1, . . . , n} be the set of envelopes. We have S = 2[n]∪{Empty} and A = [n].
� State s ⊆ [n] means exactly the envelopes from s are open, all are non-empty.
� State Empty means there is at least one open empty envelope.
� Starting state is sinit = ∅.
� Action a ∈ A means you open envelope a

Rewards and Transitions:
� Reward ra(s) = va · qa if a ̸∈ s: open new envelope a and get the expected reward.
� pa(s, s ∪ {a}) = qa. If new envelope a contains a prize, move to s ∪ {a} and continue.
� pa(s,Empty) = 1− qa: If new envelope a is empty, move to Empty.
� Wait a second: You always get the reward ra(s) for new envelope s, no matter whether
it contains a prize or is empty? Yes, but only va · qa! Getting va when the envelope
contains a prize and 0 otherwise has the same expectation as always getting va · qa.

� Reward ra(Empty) = 0 and transition pa(Empty,Empty) = 1, for all a ∈ A. Once
in Empty, you stay there and get no further reward.

� In MDPs we can play any action in any state. We forbid “re-opening” an envelope by
rewards: ra(s) = −∞ and pa(s, s) = 1, for a ∈ s.

[Pic: MDP for PrizeCollection states, actions, transitions]

3.2.1 Optimal Policies

In general, we could move through an MDP for unbounded time. We here focus on MDPs
with finite time horizon with a finite number of T ∈ N rounds.

A (deterministic) policy π assigns each sequence of states s1, . . . , st−1 a single action a ∈ A.
� Running policy π we see random sequences of states sπ1 , . . . , s

π
T and actions aπ1 , . . . , a

π
T

� Expected reward of policy π is

V (π, sinit, T) = E

[
T∑
t=1

raπt (s
π
t)

]

� Since they are deterministic, there are at most
∏T

t=1 |S|t×|A| different policies. Hence,
there is an optimal policy π∗ with V (π∗, sinit, T) = maxπ V (π, sinit, T).

� Notation V ∗(sinit, T) = V (π∗, sinit, T).

A particularly nice property of a policy is when it is Markovian. Then the choice of action
in round t depends only on st−1 and on t but not on the rest of the history s1, . . . , st−2.
It turns out that there is at least one optimal policy that is also Markovian! Moreover, this
policy can be computed in polynomial time.

Theorem 12. For MDPs with finite time horizon, there is an optimal policy π∗ that is
Markovian. It can be computed in time O(T · |S|2 · |A|).

3.2. MARKOV DECISION PROCESSES 33

Proof. Consider any optimal policy π with V (π, sinit, T) = V ∗(sinit, T). Since aπ1 is deter-
ministic,

V (π, sinit, T) = raπ1 (sinit) + E

[
T∑
t=2

raπt (s
π
t)

]

= raπ1 (sinit) + paπ1 (sinit, s
′) · E

[
T∑
t=2

raπt (s
π
t)

∣∣∣∣∣ sπ2 = s′

]

Consider the last term on the right-hand side:
� Markovian: Rewards and transitions in rounds 2, . . . , T do not depend on sinit and a

π
1 .

� Consider choices of π in rounds 2, . . . , T when s2 = s′. Denote this subpolicy by π2,s′ .
� We can use π2,s′ in another MDP that runs for T − 1 rounds and starts in s′.

� Since the process is Markovian, V (π2,s′ , s
′, T − 1) = E

[∑T
t=2 raπt (s

π
t)
∣∣∣ sπ2 = s′

]
� Now consider an optimal policy π′ for that other MDP:

E

[
T∑
t=2

raπt (s
π
t)

∣∣∣∣∣ sπ2 = s′

]
= V (π2,s′ , s

′, T − 1) ≤ V (π′, s′, T − 1) = V ∗(s′, T − 1)

� We can also use π′ instead of π2,s′ in to play rounds 2, . . . , T in the original MDP.

� Since the process is Markovian, E
[∑T

t=2 raπ′
t
(sπ

′
t)
∣∣∣ sπ′

2 = s′
]
= V ∗(s′, T − 1)

� But π is an optimal policy, so this substitution must give no improvement, and hence

E

[
T∑
t=2

raπt (s
π
t)

∣∣∣∣∣ sπ2 = s′

]
= V ∗(s′, T − 1)

Applying this argument recursively, for any round t ≥ 1, we can assume that in rounds
t, . . . , T an optimal policy for an MDP with T − t+1 rounds starting from state st is played.
As such, there is an optimal policy where decisions depend only on the state st and the
round t. The recusion for the optimal reward V ∗(s, T) is

V (s, T) = max
a∈A

(
ra(s) +

∑
s′∈S

pa(s, s
′) · V ∗(s′, T − 1)

)
(3.2)

Computing this value and tracking the optimal actions choices can be done by dynamic
programming in time O(T · |S|2 · |A|).

3.2.2 Examples for Optimal Policies

PrizeCollection. To visualize the dynamic program, consider the following simple exam-
ple. There are two rounds with v1 = 1000, q1 = 0.01 and v2 = q2 = 1. Clearly, we want
to open envelope 2 before 1, with expected reward 1+10 = 11. Computing the dynamic
program yields the following table (columns are states, rows are values of T):

34 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

T ∅ {1} {2} {1, 2} Empty
0 0 0 0 0 0
1 10 1 10 −∞ 0
2 11 −∞ −∞ −∞ 0

Only the bold entries must be evaluated when invoking the recursion from V (∅, 2) with
allowed actions. For the final step, we compare two options: Open envelope 1 first, which
gives 10 + 0.01 · 1 + 0.99 · 0 = 10.01; or envelope 2 first, which yields 1 + 1 · 10 = 11.

The direct approach suffers from the need to deal with more than 2n many states. With a
little more insight, we discover an optimal policy with much simpler structure:

� Optimal policy π∗ defines an order in which envelopes are opened.
� Suppose in this order envelope i comes directly before j.
� Let s be the set of envelopes opened before i. Apply (3.2) twice to get

V ∗(s, T) = V (π∗, s, T) = vi · qi + qi · V ∗(s ∪ {i}, T − 1)

= vi · qi + qi(vj · qj + qj · V ∗(s ∪ {i, j}, T − 2))

� We could also switch the order of j and i and keep the rest of π∗ the same. This gives
a policy π with

V (π, s, T) = vj · qj + qj(vi · qi + qi · V ∗(s ∪ {i, j}, T − 2))

� Since π∗ is optimal, we know

vi · qi+ qi(vj · qj + qj ·V ∗(s∪{i, j}, T − 2)) ≥ vj · qj + qj(vi · qi+ qi ·V ∗(s∪{i, j}, T − 2)).

� After re-arranging terms, this implies

vi · qi
1− qi

≥ vj · qj
1− qj

Hence, it is optimal to open envelopes in non-increasing order of viqi/(1− qi). The policy is
unique up to tie-breaking among envelopes, for which the fraction has the same value.

Ski-Rental. Reconsider the Ski-Rental problem, which we discussed in Chapter 1. Sup-
pose there is a probability q ∈ [0, 1] such that each day the resort opens independently with
probability q. We can buy skies at a cost of B > 1 or rent at a cost of 1.

Ski-Rental as an MDP:
� Three states: (o)pen, (c)losed, boug(h)t skis. Two actions: (r)ent, (b)uy.
� For consistency we use cost instead of reward: ca(s) = −ra(s).
� State open: Costs cr(o) = 1, cb(o) = B and transition: pr(o, o) = q, pr(o, c) = 1 − q,
pb(o, h) = 1.

� State closed: No costs, and no effect of renting or buying, i.e., pr(c, o) = pb(c, o) = q
and pr(c, c) = pb(c, c) = 1− q.

� State bought: No costs, and we remain there pb(h, h) = pr(h, h) = 1.

3.2. MARKOV DECISION PROCESSES 35

� Technically, for MDPs an initial state must be given. But we want that open/closed
on first day is random → start from an auxiliary “day 0” in state c.

[Pic: States, Rewards, Transition Probabilities]

The optimal policy π∗ is Markovian, depends only on current state and number of days left.

� Under which conditions does it buy in state o? This completely determines the cost.
� C(T) optimal cost for a sequence of T days.
� Key point: If π does not buy on day 1, it faces the same MDP with T − 1 days!
� Hence, from (3.2) we can infer

C(T) =

{
q · (C(T − 1) + 1) + (1− q) · C(T − 1) if π∗ rents in (o, T)

q ·B + (1− q) · C(T − 1) otherwise

� π∗ chooses the cheaper of the two options:

C(T) = q ·min{C(T − 1) + 1, B}+ (1− q) · C(T − 1)

Analyzing the recursion reveals the optimal buying time:

� We start from C(0) = 0. Then C(T − 1) + 1 ≤ B and so C(T) = C(T − 1) + q.
� Hence, C(T) = qT for the first values of T .
� At some point τ we get C(τ − 1) + 1 > B. Then it becomes better to buy.
� This point is the smallest τ such that q(τ − 1) + 1 > B, or τ = ⌊B−1

q
+ 2⌋

� Note C(T − 1) + 1 > B for larger T ≥ τ .
� Then C(T) = qB + (1− q) · C(T − 1), which approaches B.

Overall, π∗ buys on any open day t when there are at least ⌊B−1
q

+ 2⌋ remaining days

(including day t). Clearly, if the first open day satisfies this, it buys on that day. Otherwise,
no subsequent open day will satisfy it, so it rents throughout. Note that π∗ never first rents
and then buys!

Prophet. Consider the Prophet problem as an MDP.

� Two actions: (a)ccept and (c)ontinue.
� States have to store round t and current value vt that we decide on
� Action (a) → get reward vt, move to state (h)alted.
� Action (c) → no reward, move to state (i+ 1, r) with probability Pr[vt+1 = r].
� In state h, we get no reward and remain in h
� Inititalization: Auxiliary round 0 with state (0, 0)
� For simplicity, we assume distributions Dt are finite→ this yields finitely many states.
� In principle the results hold also for general distributions.

[Pic: States, Rewards, Transition Probabilities]

For the optimal policy π∗ recall Equation (3.2).

� In each round t only two choices: accept reward vt, or continue without reward.

36 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

� In state (t, vt), suppose π
∗ accepts. Then current reward is higher than the optimal

expected reward from remaining rounds:

vt ≥
∑
r

Pr[vt+1 = r] · V ∗((t+ 1, r), n− t)

� Otherwise, if π∗ picks continue, the inequality is reversed.
� The right-hand side is the expected reward from an optimal policy in the rounds
t+ 1, . . . , n. Since the policy is Markovian, this is independent of vt.

� The expected subsequent reward is an acceptance threshold for the current round.

This yields the following characterization of the optimal policy π∗.

Theorem 13. π∗ uses thresholds τ1 ≥ . . . ≥ τn defined recursively by τn = 0 and τt =
E[max{vt+1, τt+1}] for 1 ≤ t < n. In round t, π∗ accepts if vt > τt and rejects if vt < τt. The
decisions are unique up to tie-breaking at vt = τt, which is irrelevant for the expected value.

Proof. We will show that the sequence τt as defined in the theorem is exactly the expected
reward of an optimal policy on the subinstance of rounds t+ 1, . . . , n. That is,

τt = E[V ∗((t+ 1, vt+1), n− t)] .

Induction on t downward from n to 1.
� Base case t = n: trivial. Policy reward is 0, we defined V ∗(s, 0) = 0 for all states s.
� Step t→ t− 1: Assume optimal expected reward on t+ 1, . . . , n is τt
� Recall (3.2). Optimal expected reward on rounds t, . . . , n for fixed vt is

V ∗((t, vt), n− t+ 1) = max
a∈A

ra((t, vt)) +
∑
s′∈S

pa((t, vt), s
′)V ∗(s′, n− t)

� For a = (a) the term is vt; for a = (c) it is E[V ∗((t+ 1, vt+1), n− t)]
� By hypothesis E[V ∗((t+ 1, vt+1), n− t)] = τt. Thus, for any fixed vt

V ∗((t, vt), n− t+ 1) = max(vt, τt)

� Expectation over vt completes the induction step.

Consider the structure of the thresholds.
� If vt > τt, the maximum is attained for a = (a)ccept; if vt < τt, it is attained for
a = (c)ontinue; if vt = τt, both give same expected reward, so any choice is optimal.

� τt is reward of an optimal policy on rounds t, . . . , n. This policy is better than ignoring
round t and using the optimal policy for t+ 1, . . . , n. Hence: τt ≥ τt+1.

Example 2. We discuss a small example with v1 ∼Uniform{0, 1, 2}, v2 ∼Uniform{1, 3, 4, 5},
v3 ∼ Uniform{0, 1, 9} and v4 ∼ Uniform{0, 3}.

For τ4 = 0, so τ3 = E[max{v4, 0}] = 3
2
. For τ2, we need to compute

τ2 = E
[
max

{
v3,

3

2

}]
=

2

3
· 3
2
+

1

3
· 9 =

12

3
= 4

3.3. YAO’S PRINCIPLE 37

Hence, in round 2, the optimal policy has a choice to accept v2 = 4 or continue. For τ1, we
see that

τ1 = E [max {v2, 4}] =
3

4
· 4 + 1

4
· 5 = 4.25

Hence, the expected reward of π∗ is E[max{v1, τ1}] = τ1 = 4.25. Note that this is the optimal
reward of any online policy. What is the value of the offline optimum E[maxt vt]? ■

3.3 Yao’s Principle

In this section, we use distributions and stochastic uncertainty in the input instance more
as a analytical tool. Our goal is to lower bound the performance of (not necessarily online)
randomized algorithms on worst-case input. Let’s consider a cost minimization problem, say,
Ski-Rental, and let Σ be a set of possible instances.

First, let’s consider input distributions and the best deterministic algorithm:
� There is a random variable S that yields instances from Σ (based on a distribution D).
� Consider the best deterministic (online) algorithm that minimizes the expected cost
over the random instances from S.

� Consider the expected cost of that algorithm.

Let’s compare this to randomized algorithms and worst-case input:
� Consider any randomized algorithm ALG for the problem, and
� a worst-case instance σALG ∈ Σ that maximizes the expected cost E[ALG(σALG)]
� Let ALG∗ be the algorithm that minimizes E[ALG∗(σALG∗)]

Turns out, the cost in the second case is always larger: For every randomized algorithm ALG
there is some worst-case instance σALG such that E[c(ALG(σALG))] is at least the expected
cost of the best deterministic algorithm for any fixed distribution D over inputs.

Although easy to prove, this insight is very powerful, especially for proving lower bounds. We
only have to come up with an input distribution D such that every deterministic algorithm
performs badly in expectation (over D). Then no randomized algorithm can perform well
on worst-case inputs !

Let’s describe the setting a little more formally:
� A randomized algorithm ALG has access to random bits
� If we fix all outcomes of these random bits, ALG becomes deterministic
� Hence: ALG is a distribution over deterministic algorithms
� Let A denote the set of all deterministic algorithms for our problem
� ALG gives rise to a random variable A that takes values from A
� We denote the worst-case expected cost of ALG by maxσ∈Σ E[c(A, σ))]
� In addition, we consider a random variable S to choose instances from Σ.

Yao’s principle is per se not about algorithms and instances - it is a general statement on
maximization and minimization for functions with random arguments.

38 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

Theorem 14 (Yao’s Principle). Let A be an arbitrary random variable taking values in A
and S be a random variable taking values in Σ. Then, for a cost function c we have

max
σ∈Σ

E[c(A, σ)] ≥ min
a∈A

E[c(a, S)] .

For a value function v(a, σ) = −c(a, σ) this implies

min
σ∈Σ

E[v(A, σ)] ≤ max
a∈A

E[v(a, S)] .

The two statements are perfectly equivalent. Their specific forms come in handy when
lower (upper) bounding the expected cost (value) of randomized algorithms for minimization
(maximization) problems, respectively.

Proof. The theorem holds in general, but for simplicity we assume A and Σ are finite. The
expectations can be expressed as sums over all outcomes

E[c(A, σ)] =
∑
a∈A

Pr[A = a] · c(a, σ) and E[c(a, S)] =
∑
σ∈Σ

Pr[S = σ] · c(a, s)

� To tackle max and min, we use the fact the maximum entry of a set of numbers is
more than any weighted average of that set. Similarly, the minimum entry of a set is
less than any weighted average of that set.

� wσ = Pr[S = σ] ∈ [0, 1] can be used as weights for a weighted average, since
∑

σ wσ = 1.
� Similarly wa = Pr[A = a] ∈ [0, 1] can also be used as weights for a weighted average.
� Assembling these insights, and suitably re-arranging the sums we see that

max
σ∈Σ

E[c(A, σ)] = max
σ∈Σ

∑
a∈A

Pr[A = a] · c(a, σ) by definition

≥
∑
σ∈Σ

wσ ·
∑
a∈A

Pr[A = a] · c(a, σ) since max ≥ weighted average

=
∑
σ∈Σ

∑
a∈A

wσ · Pr[A = a] · c(a, σ) by rearranging sums

=
∑
σ∈Σ

∑
a∈A

Pr[S = σ] · wa · c(a, σ)

=
∑
a∈A

wa

∑
σ∈Σ

Pr[S = σ] · c(a, σ) by rearranging sums

≥ min
a∈A

∑
σ∈Σ

Pr[S = σ] · c(a, σ) since weighted average ≥ min

= min
a∈A

E[c(a, S)] by definition

We will apply the principle to show lower bounds on randomized online algorithms that we
mentioned earlier.

3.3. YAO’S PRINCIPLE 39

OnlineMax. We prove Theorem 5 for the OnlineMax problem without random-order or
distributional information. We show that every randomized algorithm for OnlineMax has
a competitive ratio of Ω(n).

The key point is to invent a distribution over input instances such that the best determin-
istic algorithm is bad on that input distribution. Towards this end, consider the following
stochastic process to generate an input instance.

� The process maintains a condition “alive”. Initially, it is alive.
� In each round t, it first updates the alive-status: If it is alive, then it becomes not alive
with probability 1/2. If it is not alive, it stays not alive.

� Then the value for person i is chosen: If alive, vt = 2t, otherwise vt = 0.

The instances have the form (2, 4, 8, 16, . . . , 2j, 0, . . . , 0). We will call such instances power-of-
2-instances of length n. The process constructs a random variable S over power-of-2-instances
of length n. Round t has non-zero value with probability (1/2)t.

Consider any deterministic online algorithm a for this input distribution.
� In each round t, if it sees vt = 0, it must have value 0.
� Otherwise, it has seen a sequence of powers of 2. It deterministically decides to accept
vt = 2t or reject it.

� Let i∗ be the first round, in which it accepts 2t
∗
.

� If and only if the process is alive after round t∗, the algorithm gets 2t
∗
. Otherwise, the

algorithm gets value 0. Hence,

E[v(a, S)] = Pr[alive in round t∗] · 2t∗ = 1

Round t = 1, . . . , n − 1 is the last alive round with probability (1/2)t+1. For round n, this
holds with probability 1/2n. The offline optimum knows this, it chooses the person from the
last alive round. Hence, the expected value of OPT is

E[v(OPT, S)] =
n∑

t=1

Pr[t last alive round] · 2t = n− 1

2
+ 1 = Ω(n)

Now, consider any randomized algorithm A. Since it is a distribution over deterministic
algorithms, we have

E[v(A, S)] =
∑
a∈A

Pr[A = a] · E[v(a, S)] = 1

Clearly, if A was o(n)-competitive, there would be some constant b ∈ O(1), such that on
every power-of-2-instance σ

E[v(A, σ)] ≥ v(OPT, σ)/o(n) +O(1).

As such, in expectation over the power-of-2-instances, A would obtain

E[v(A, S)] ≥ Ω(n)/o(n) +O(1) = ω(1) > 1

for sufficiently large n, a contradiction.

40 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

3.4 Independent Set

As another important generalization of the OnlineMax we consider classes of the classic
Independent Set problem in an online version. Even in the standard offline case, it is
NP-hard to approximate this problem within a factor of n1−ε. However, in several meaningful
cases, we can show good performance bounds, even with online arrival.

For motivation, consider a facility management agency that schedules events in a location.
� Requests for events arrive online and must be accepted or rejected.
� In month i, we get n requests for events in month i+1 sequentially in an online fashion.
� Each event u comes with some start and end date in the next month.
� Event u has to be decided before seeing the next event(s).
� Once accepted, u blocks all other events with an overlap in time.
� Goal: Maximize the number of accepted unblocked events.

This is the Interval Scheduling problem discussed in undergraduate classes. Each event
is a time interval. The goal is to select as many mutually disjoint intervals as possible. The
problem can be framed using an interval graph G – each interval corresponds to a node
v ∈ V . An edge {u, v} exists if and only if the intervals corresponding to u and v overlap.
Hence, Interval Scheduling is Independent Set in the interval graph.

We can solve the offline problem optimally with a standard Greedy Algorithm:

Accept the unblocked interval with earliest end date; repeat until every interval is either
accepted or blocked.

For this algorithm, and throughout this section, we assume that we break ties consistently.
Hence, w.l.o.g. we assume all intervals have distinct end dates.

[Pic: Events, Interval Graph, Greedy Algorithm]

For the online problem, it is impossible to obtain any non-trivial guarantee in the worst-case,
even if the number n of intervals is known in advance.

Theorem 15. Every randomized algorithm for Online Interval Scheduling is Ω(n)-
competitive, even if the number n of intervals is known in advance.

3.4.1 Random Graph and Worst-Case Arrival

Let us instead consider a slightly more structured uncertainty in the Prophet Interval
Scheduling problem:

� There is a known base graph G = (V,E) with n nodes. G is an interval graph.
� G is a supergraph of the actual (random) input graph.
� The n intervals of V are considered in an arbitrary (i.e., possibly worst-case) order
� In the beginning, each interval v has a known probability pv to exist.
� Round t: Nature decides if interval ut exists by independent draw with prob. put

Consider Algorithm 6 for this problem. The algorithm needs to know for each node an
interval representation of start and end date. Looking more closely, it is indeed sufficient
to know only the ordering of all n intervals by end date.

3.4. INDEPENDENT SET 41

Algorithm 6: Prophet Interval Scheduling

1 V S ← ∅ // sample set of intervals

2 for each node v ∈ V do with probability pv add v to V S

3 M1 = Independent Set chosen by Greedy Algorithm on the induced subgraph G[V S]
4 M2,M3,M4 ← ∅ // filtered sets of input intervals

5 for rounds t = 1, . . . , n do
6 if ut does not exist then continue to next round
7 else if ̸ ∃ v ∈M1 with earlier end date and {v, ut} ∈ E then add ut to M2

8 if ut ∈M2 then with prob. 1/2: add ut to M3

9 if ut ∈M3 and ut has no edges to nodes in M4 then add ut to M4

10 return M4

Theorem 16. Algorithm 6 is 4-competitive for the Prophet Interval Scheduling prob-
lem.

Let V I be the (random) set of nodes that actually exist in the input graph. The (random)
input graph is G[V I], the subgraph of G induced by V I . Let OPT (V I) be the size of the
largest independent set in G[V I].

Lemma 5. It holds that E[|M1|] = E[OPT (V I)].

Proof. Not knowing V I , the algorithm instead draws the sample V S. M1 computed by
Greedy is an optimal solution on G[V S]. Since V I and V S are drawn independently from
the same distribution

E[|M1|] = E[OPT (V S)] = E[OPT (V I)].

Clearly, the algorithm discards all nodes vt that do not exist. Among the ones that exists,
it should accept unblocked intervals that block few subsequent ones. It does so using two
filtering steps in lines 7 and 8. Maybe surprisingly, the first step has no impact on the
expected size of the optimal solution.

Let X i
u be an indicator variable that u ∈Mi, for any node u ∈ V and i = 1, 2, 3.

Lemma 6. For every interval u, it holds that

E[X1
u] = E[X2

u].

Furthermore, for every overlapping interval v with earlier end date, it holds

E[X1
u | v ∈M3] = E[X2

u | v ∈M3].

Proof. For the first statement, look at the round t with ut = u.
� First, suppose there is some overlapping interval v ∈M1 with earlier end date than u.
Then X2

u = 0. Also, X1
u = 0, since Greedy would consider u later and reject it.

42 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

� Second, suppose there is no overlapping interval v ∈M1 with earlier end date than u.
� Greedy will include u inM1 if u ∈ V S. Similarly, the algorithm adds it toM2 if u ∈ V I .
Hence,

(a) u ∈ V S, u ̸∈ V I ⇒ X1
u = 1, X2

u = 0.
(b) u ̸∈ V S, u ∈ V S ⇒ X1

u = 0, X2
u = 1.

(c) u ∈ V S, u ∈ V I ⇒ X1
u = X2

u = 1.
(d) u ̸∈ V S, u ̸∈ V I ⇒ X1

u = X2
u = 0

� M1 andM2 treat u differently only in cases (a) and (b). They have the same probability
since sample is independent of input: Pr[u ∈ V S, u ̸∈ V I] = Pr[u ̸∈ V S, u ∈ V I].

This proves E[X1
u] = E[X2

u].

The second statement follows very similarly. Suppose for u there is some overlapping v ∈M3

with earlier end date.
� First, consider event A thatM1 contains v or any other overlapping interval with earlier
end date than u. Then

E[X1
u | A, v ∈M3] = E[X2

u | A, v ∈M3] = 0.

� Second, assume otherwise. Then if u ∈ V S, it is added to M1 by Greedy. If u ∈ V I , it
is added to M2 in line 7. v ∈M3 has no influence on this decision. Hence,

E[X1
u | ¬A, v ∈M3] = Pr[u ∈ V S] = pu = Pr[u ∈ V I] = E[X2

u | ¬A, v ∈M3].

As a consequence of the first statement, E[|M2|] = E[|M1|]. Also, clearly, E[|M3|] = E[|M2|]/2
due to line 8. Now the following lemma implies a relation between M3 and M4. Consider
the set of all edges among nodes in M3

C = {{u, v} ∈ E | u, v ∈M3}.

Lemma 7. It holds that E[|C|] ≤ E[|M3|]/2.

Proof. For any fixed node v ∈M3. Consider all intervals with later end date that would be
blocked by v

Cv = {u ∈ V | {u, v} ∈ E and u has later end date }.

[Pic: Set Cv of intervals that overlap with v ∈M3 and have later end date]

Suppose v would enter M4.
� How many of the intervals in Cv would actually be rejected because v ∈M4?
� To be blocked by v, an interval from Cv must first make it to M3 in line 8! Note that

E[|Cv ∩M3| | v ∈M3] = E

[∑
u∈Cv

X3
u

∣∣∣∣∣ v ∈M3

]
=
∑
u∈Cv

E
[
X3

u | v ∈M3

]
.

� Clearly, E[X3
u | v ∈M3] = E[X2

u | v ∈M3]/2 due to line 8.

3.4. INDEPENDENT SET 43

� The second statement of the previous lemma implies E[X2
u | v ∈M3] = E[X1

u | v ∈M3],
and hence ∑

u∈Cv

E
[
X3

u | v ∈M3

]
=

1

2

∑
u∈Cv

E
[
X1

u | v ∈M3

]
� By construction, all intervals in Cv are mutually overlapping. Hence, there can be at
most one interval from Cv in M1.∑

u∈Cv

E
[
X1

u | v ∈M3

]
≤ 1.

� Hence, in expectation v blocks at most 0.5 intervals from Cv!

Now consider the set C. Clearly, each edge among nodes in C can be assigned to the node
v with earlier end date, so |C| =

∑
v∈M3

|Cv ∩M3|

E[|C|] =
∑
v∈C

Pr[v ∈M3] · E[|Cv ∩M3| | v ∈M3]

=
∑
v∈C

Pr[v ∈M3] ·
∑
u∈Cv

E[X3
u | v ∈M3]

=
∑
v∈C

Pr[v ∈M3] ·
1

2

∑
u∈Cv

E[X1
u | v ∈M3]

≤ 1

2

∑
v∈C

Pr[v ∈M3] · 1 = E[|M3|]/2

Proof of Theorem 16. C contains at least one unique edge for every node from M3 that is
denied to enter M4. Hence |M4| ≥ |M3| − |C|. Overall, the expected number of intervals
accepted by Algorithm 6 is

E[|M4|] ≥ E[|M3| − |C|]
≥ 1/2 · E[|M3|]
= 1/4 · E[|M2|] = 1/4 · E[|M1|]
= 1/4 · E[OPT (V I)]

3.4.2 Worst-Case Graph and Random-Order Arrival

Algorithm 6 can be applied beyond the rather special uncertainty model of Prophet Inter-
val Scheduling. It can be adapted to many other mixtures of stochastic and worst-case
uncertainty. Let us discuss this for a Secretary Interval Scheduling problem:

� Base graph G is unknown (e.g., determined by an adversary) in advance
� Properties of G known in advance: G is interval graph, number n of nodes

44 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

Algorithm 7: Secretary Interval Scheduling

1 V S ← ∅ // sample set of intervals

2 k ∼Binom(n, 1/2) // random number of sample rounds

3 for rounds t = 1, . . . , k do add ut to V
S

4 M1 = Independent Set chosen by Greedy Algorithm on the induced subgraph G[V S]
5 M2,M3,M4 ← ∅
6 for rounds t = k + 1, . . . , n do
7 if ̸ ∃ v ∈M1 with earlier end date and {v, ut} ∈ E then add ut to M2

8 if ut ∈M2 then with prob. 1/2: add ut to M3

9 if ut ∈M3 and ut has no edges to nodes in M4 then add ut to M4

10 return M4

� After construction of G, the n nodes arrive sequentially in uniform random order
� Upon arrival in round t, node ut reveals all edges to nodes arrived in earlier rounds
� ut must be accepted or rejected before seeing the next node(s), decisions are irrevocable
� Goal: Construct a large independent set.

We solve this problem with a variant of Algorithm 6 given in Algorithm 7.
Some remarks:

� We build a sample V S as the set of nodes in the first k rounds.
� Define the “input” set of nodes V I as the ones arriving in rounds k + 1, . . . , n.
� Note that V S ∩ V I = ∅, i.e., a node u is either in the sample or in the input.
� We assume to get an interval representation for every arriving node. As before, an
ordering of all (arrived so far) nodes w.r.t. non-decreasing end date is sufficient.

� W.l.o.g. we can break ties arbitrarily and assume that all end dates are distinct, i.e.,
the ordering is unique.

Theorem 17. Algorithm 7 is 8-competitive for the Secretary Interval Scheduling
problem.

To show the theorem, we largely adapt the proof from the previous section.

We start by observing that the sampling procedure has an independence property. Given
any base graph G = (V,E) and a node u ∈ V , the events u ∈ V S and u ∈ V I are mutually
exclusive, and exactly one of the events occurs. We observe that the events are independent
for different nodes u ̸= v.

Lemma 8. Consider any two nodes u ̸= v from V . The events u ∈ V x and v ∈ V y are
independent, for every x, y ∈ {I, S}.

Proof. Nature picks the permutation π of arrival uniformly at random. The algorithm picks
a sample length k by flipping n independent coins with probability 1/2 and counting the
number of heads (i.e., draws from a binomial distribution with parameters n and p = 1/2).
These two stochastic processes are independent.

Consider the following simulation:

3.4. INDEPENDENT SET 45

1. For each v ∈ V , flip independent coin with prob. 1/2 whether v ∈ V S or V I .
2. Place sample intervals in the front of π, input intervals in the back of π
3. Permute sample in uniform random order in the front of π.
4. Permute input in uniform random order in the back of π.

[Pic: Simulation vs. original process]

Obviously, the lemma holds for the simulation (due to step 1.). We now show that the
simulation yields an equivalent outcome as the original processes. This follows from two
properties:
(1) Given any sample length k ∈ {0, 1, . . . , n}, the arrival order of V in the simulation is

uniform over all permutations.
(2) Given any arrival order, the sample length in the simulation is binomially distributed

with parameters n and p = 1/2.
We leave the proof of these properties as an exercise.

Note that in Secretary Interval Scheduling the interval graph G is not subject to
randomization (only the arrival order). As such, the size OPT of the maximum independent
set is not a random variable.

Lemma 9. It holds that E[|M1|] ≥ OPT/2.

Proof. ConsiderM∗, an optimal independent set in G with |M∗| = OPT . By Lemma 8 each
node from M∗ is in V S independently with probability 1/2. Hence, using indicator variables
for v ∈ V S and linearity of expectation

E[|M∗ ∩ V S|] =
∑
v∈M∗

Pr[v ∈ V S] = |M∗|/2 = OPT/2.

Clearly, since M1 is the optimum for V S, we know |M1| ≥ |M∗ ∩ V S| for every realization of
the sample set V S. The lemma is proved.

We again use X i
u as an indicator variable that u ∈Mi, for any node u ∈ V and i = 1, 2, 3.

Lemma 10. For every interval u, it holds that

E[X1
u] = E[X2

u].

Furthermore, for every overlapping interval v with earlier end date, it holds

E[X1
u | v ∈M3] = E[X2

u | v ∈M3].

Proof. The proof of this lemma is almost the same as the proof of Lemma 6 above.

In the proof of the first statement, cases (c) and (d) do not occur. Cases (a) and (b) have
the same probability since Pr[u ∈ V S] = Pr[u ∈ V I] = 1/2.

For the second statement, v ∈M3 again has no influence on the decision if u ∈M1 or u ∈M2.
Considering event A that M1 contains an overlapping interval with earlier end date than u
(Note: this cannot be v here, since v ∈ M3 implies v ∈ V I and v ̸∈ V S), then conditioned
on A and ¬A both events u ∈M1 and u ∈M2 have the same probabilities, respectively.

46 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

The first statement implies E[|M2|] = E[|M1|]. Also, clearly, E[|M3|] = E[|M2|]/2. For the
relation between M3 and M4 we again consider the set C = {{u, v} ∈ E | u, v ∈ M3} of all
edges among nodes in M3.

Lemma 11. It holds that E[|C|] ≤ E[|M3|]/2.

Lemma 10 shows the same properties as Lemma 6, and the structure of the algorithm with
construction of M2, M3 and M4 is exactly the same as before. The proof of Lemma 7 can
be applied directly without modifications.

Proof of Theorem 17. We combine the properties exactly as in the proof of Theorem 16,
using the additional factor of 2 relating E[|M1|] and OPT :

E[|M4|] ≥ E[|M3| − |C|]
≥ 1/2 · E[|M3|]
= 1/4 · E[|M2|] = 1/4 · E[|M1|]
= 1/8 ·OPT

3.4.3 Inductive Independence and Graph Sampling

We have seen two scenarios in which the same algorithmic idea can be applied to obtain a
constant competitive ratio. How far can this idea and the proof arguments be extended?
What are key properties of the uncertainty model that make the arguments work?

As an important extension, we consider the structure of the base graph G. The main idea
in the algorithms above is not restricted to interval graphs! The key property is that
there is (and we know) a good ordering π of the nodes:

� For ordering π and each node v ∈ V consider the backwards neighborhood

N+
v,π = {u ∈ V | {u, v} ∈ E, u ≻π v},

i.e., all neighbors of v that come later in ordering π.
� Consider the size of the largest independent set in the backwards neighborhood

ρv,π = max{|I| | I ⊆ N+
v,π and I is independent set }.

� Now for ρπ take the largest size for all nodes,

ρπ = max
v∈V
{ρv,π}.

For ordering π every independet set in every backwards neighborhood is at most ρπ.
� A good ordering π gives a small ρπ. The best ordering yields the inductive indepen-
dence number ρG of G:

ρG = min
π
{ρπ}

3.4. INDEPENDENT SET 47

A bounded inductive independence number implies that a good independent set can be
computed easily. The proof of the following proposition is left as an exercise.

Proposition 1. Given any graph G and an ordering π of the nodes, consider the standard
greedy algorithm that considers all nodes in the order of π and adds them to the indepedent
set whenever possible. The algorithm computes a ρπ-approximation.

In the next propsition, we consider non-trivial interval graphs G with E ̸= ∅.

Proposition 2. Every non-trivial interval graph has ρG = 1. The best ordering is the one
by non-increasing end date.

Proof. Consider the ordering π by non-decreasing end dates.
� N+

u,π is the set of all intervals with later end date that overlap u.
� All intervals in N+

u,π must overlap each other, since they cross end date of u.
� Hence, the largest independent set in N+

u,π has size 1 for every node u.
� ρπ = 1 for the ordering π by non-decreasing end dates.
� Note: ρπ ≥ 1 for every ordering π unless E = ∅.

Hence, for every interval graph with E ̸= ∅ we have ρG = 1.

ρG = 1 implies that G is a chordal graph and the best ordering π is an elimination order.
In fact, an elimination order for a chordal graph can be computed in polynomial time (just
from the graph structure, without interval representations).

In many interesting classes of geometric intersection graphs (such as disk graphs, or other
conflict graphs derived from interference models in wireless networks) the geometric inter-
pretation suggests an ordering π, for which ρπ is known to be small.

[Pic: Disk graphs, bounded inductive independence]

Algorithms 6 and 7 can be applied rather directly to such graphs:
� For the arriving graph they need to know (a) an ordering π and (b) the number ρπ.
� This must be known for the sample G[V S] and in the induced subgraph of sample and
arrived nodes in every round t.

� The algorithms get adjusted in the following way:
(a) Use the Greedy algorithm from Proposition 1 based on π to compute M1.
(b) Change the probability of 1/2 to 1/(2ρπ) when adding a node ut ∈M2 to M3.

� Each of these adjustments deteriorates the ratio by a factor of ρπ.

Theorem 18. Given any base graph G with an ordering π, there are algorithms that are
4ρ2π-competitive for Prophet Independent Set and 8ρ2π-competitive Secretary Inde-
pendent Set.

The proof of the theorem is left as an exercise.

Beyond the structure of the base graph G, we also generalize the stochastic subgraph gener-
ation and arrival model. Consider a graph sampling model with the following properties:

� The base graph G = (V,E) is unknown, n = |V | is known. G has an ordering π with
small inductive independence number.

48 CHAPTER 3. ONLINE ALGORITHMS WITH DISTRIBUTIONS

� In the beginning, we see a node sample V S ⊆ V , the induced subgraph G[V S], and the
ordering of these nodes according to π.

� Then the input nodes V I ⊆ V arrive in worst-case order. Each arriving node reveals
all incident edges to nodes in V S and previously arrived ones from V I . We see the
ordering of all sample and arrived input nodes according to π.

� The goal is to compute a good independent set in G[V I].
� V S and V I are generated stochastically from G according to two properties:
� Stochastic Similarity: For each v ∈ V , the probabilities to be in V S and V I are
similar up to a factor c, i.e., Pr[v ∈ V S] ≤ c ·Pr[v ∈ V I] and Pr[v ∈ V I] ≤ c ·Pr[v ∈ V S]
for some c ≥ 1.

� Independence Across Nodes: For u ̸= v the events u ∈ V x and v ∈ V y are
independent, for all x, y ∈ {I, S}. For the same node v, events v ∈ V S and v ∈ V I can
be arbitrarily correlated!

In the graph sampling model, we stochastically draw sample and input graphs from the same
underlying graph G. Sample and input node sets are related by a factor c. For different
nodes, the events that the nodes show up in sample and/or input are independent. Other
properties, such as correlation of being in sample and input for the same node, arrival order
of the input set, or the graph structure of G, are not crucial and can be chosen in a worst-case
fastion by an adversary.

Both prophet and secretary variants can be seen as special cases of the graph sampling model.
The main extension is the stochastic similarity property – both variants above satisfied this
property with c = 1. The algorithms and the proof structure can be extended rather directly.

Corollary 1. There is an algorithm that is 4ρ2πc
3-competitive for Online Independent

Set in the graph sampling model.

Chapter 4

Probing and Testing

4.1 k-Probing and Adaptivity Gap

We consider the k-ProbeMax problem:
� There are n closed boxes. Each box i contains some prize of non-negative value vi.
� Each box i has a distribution Di written on it. The prize inside is drawn vi ∼ Di

independently at random.
� k ≤ n boxes can be opened. If box i is opened, the realization of vi is revealed.
� After k boxes are opened, we can choose one opened box. We receive the prize of the
chosen box.

� Goal: Maximize the value of the prize in the chosen box

[Pic: Boxes, Prizes, Probes]

In the k-ProbeMax problem there is no online arrival with immediate and irrevocable
decisions. Instead, we can probe (i.e., open the box and see the realized value of) a number
of choices. Which boxes should be opened such that we maximize the expected value of the
prize in the end?

k-ProbeMax is easily expressed as a Markov decision process:
� State: Subset S of opened boxes and maximum reward v∗S of any opened box in S.
� Action: Unopened box (“reopening” a box → infinitely negative reward).
� Open box a in state (S, v∗S): Reward ra(S, v

∗
S) is the expected increase in highest prize:

ra(S, v
∗
S) = E[max(va − v∗S, 0)]

� Transition probabilities: pa((S, v
∗
S), (S ∪ {a}, v∗S)) = Pr[va ≤ v∗S] and

pa((S, v
∗
S), (S ∪ {a}, x) = Pr[va = x] for all x > v∗S.

Example 3. Consider n = 3 boxes and k = 2 probes. The distributions are
� Box 1 has v1 = 40 with probability 1/4, and 0 otherwise.
� Box 2 has v2 = 32 with probability 1/2, and 0 otherwise.
� Box 3 has v3 = 16 with probability 1.

Suppose our policy fixes the two boxes to open in advance. The expected prize values are

49

50 CHAPTER 4. PROBING AND TESTING

Open 1 and 2:

E[max{v1, v2}] =
1

4
· 40 + 3

4
· 1
2
· 32 = 22

Open 1 and 3:

E[max{v1, v3}] =
1

4
· 40 + 3

4
· 16 = 22

Open 2 and 3:

E[max{v2, v3}] =
1

2
· 32 + 1

2
· 16 = 24

Hence, the best of these policies obtains a value of 24. It turns out that the optimal policy
can do better. The policies above are non-adaptive in the sense that they do not adapt to
the revealed content of the boxes. What if we choose boxes adaptively?

Suppose we first open box 2. With probability 1/2 it has value 32. Then it makes no sense
opening the inferior box 3 – we explore whether we can improve upon 32 and open box 1.
Otherwise, with probability 1/2 box 2 has value 0. Then it is better to choose box 3, since
the expected value is 16 > 40/4 = 10. Overall, the value of this adaptive strategy is

1

2
·
(
1

4
· 40 + 3

4
· 32
)
+

1

2
· 16 = 17 + 8 = 25

■

Adaptive policies can be highly complicated. An adaptive policy yields a decision tree that
gives for each outcome of the probes the next box to pick. This tree can have an exponential
number of leaves, which can makes it hard to compute and extremely large to represent.

Non-adaptive policies for MDPs are much easier to handle – they choose a fixed sequence
of actions in advance, irrespective of the state transitions and rewards seen throughout the
process. An interesting question is to bound the impact of the restriction to non-
adaptive policies on the expected reward.

For a Markov decision process, the adaptivity gap is given by the ratio of expected rewards
between the best non-adaptive policy and the optimal (adaptive) policy π∗

max
π non-adaptive

V (π∗, sinit, T)

V (π, sinit, T)

The example shows that the adaptivity gap is at least 25/24 = 1.0416̄. The best upper
bound that is currently known is the following.

Theorem 19. The adaptivity gap for k-ProbeMax is at most e/(e− 1) ≈ 1.58.

We only prove an easier bound of 8, i.e., we construct a non-adaptive policy and show that
it achieves at least 1/8 of the expected reward of π∗. The better bound in the theorem is
shown using an approach that extends the one we discuss here.

The idea is to derive a linear program (LP) and solve it. The LP is constructed such that the
optimal value is more than the expected reward of the optimal adaptive policy π∗. We then

4.1. K-PROBING AND ADAPTIVITY GAP 51

transform the optimal LP-solution into a non-adaptive policy. The transformation incurs
only a loss of a factor of 1/8 in value and proves the bound.

Fix the optimal policy π∗ and consider an execution. We define the following indicator
variables along with some notation:

� Xi = 1 if box i is opened, and 0 otherwise.
� Yi,v = 1 if box i contains prize v and is chosen, and 0 otherwise.
� xi = E[Xi] = Pr[i opened]
� yi,v = E[Yi,v] = Pr[vi = v and i is (opened and) chosen]
� qi,v = Pr[vi = v]

Example 3 (continued). We apply the definitions to the optimal policy in our example. Box
2 is always opened (x2 = 1), boxes 1 and 3 are opened only with prob. 1/2 (x1 = x3 = 1/2).
For the values, we consider the combination of realization and selection. If box 2 has value
30, we open box 1. We choose it only when it has value 36. This combination of events
happens with probability y1,40 = (1/2) · (1/4) = 1/8. If box 1 has value 0, we pick box 2.
This combination of events happens with probability y2,32 = (1/2) · (3/4) = 1/8. If box 2 has
value 0, we select box 3, since it has always value 16. This event happens with probability
y3,16 = 1/2. The remaining values are yi,0 = 0, for i = 1, 2. ■

We express the expected reward of π∗ using xi and yi,v, and we derive further necessary
conditions for these values.

� By linearity of expectation and the definitions above

V (π∗, sinit, T) = E

[∑
i,v

v · Yi,v

]
=
∑
i,v

v · E[Yi,v] =
∑
i,v

v · yi,v.

� π∗ can open at most k boxes, i.e.,
∑

iXi ≤ k with probability 1. Clearly, this implies

∑
i

xi =
∑
i

E[Xi] = E

[∑
i

Xi

]
≤ k.

� π∗ can choose at most one box, i.e.,
∑

i,v Yi,v ≤ 1 with probability 1. Hence

∑
i,v

yi,v =
∑
i,v

E[Yi,v] = E

[∑
i,v

Yi,v

]
≤ 1.

� Yi,v = 1 if box i is chosen, contains prize v, and v is the maximal prize in any opened
box. We drop the last condition and see

yi,v = Pr[Yi,v = 1] ≤ Pr[Xi = 1 and vi = v] = Pr[Xi = 1] · Pr[vi = v]

The latter equality holds since opening a box is a decision of π∗, but the value vi is
realized according to an independent draw from Di. Note that

yi,v ≤ Pr[Xi = 1] · Pr[vi = v] = xi · qi,v (4.1)

52 CHAPTER 4. PROBING AND TESTING

Algorithm 8: Non-Adaptive Policy for k-ProbeMax

1 Solve the LP, let (x∗, y∗) be an optimal solution
2 for i = 1, . . . , n, until k boxes are open do open box i with probability x∗i /4
3 Inspect all opened boxes, pick i∗ as opened box with best prize
4 return i∗ and vi∗

Algorithm 9: Simulation

1 Solve the LP, let (x∗, y∗) be an optimal solution
2 for i = 1, . . . , n, until k boxes are open do
3 open box i with probability x∗i /4
4 if i open then
5 Let v be the value of box i
6 With prob. y∗i,v/(x

∗
i · qi,v): break from loop // is in [0, 1] because (4.1)

7 return last opened box and its value

The above constraints are linear in the variables xi and yi,v. We combine the objective
function and the constraints into the following LP:

Maximize
∑
i,v

v · yi,v

subject to
∑
i

xi ≤ k∑
i,v

yi,v ≤ 1

yi,v ≤ xi · qi,v ∀i, v
xi, yi,v ∈ [0, 1] ∀i, v

(4.2)

Setting all xi and yi,v according to an optimal policy π∗ gives some feasible solution to the
LP, and its value is the expected reward of π∗. An optimal LP-solution only has larger value.

In fact, the optimal LP solution can have a strictly larger value than the reward of π∗.
Hence, there are LP solutions that do not correpsond to probabilities in policies: Consider
n = 2 boxes and k = 2. Each box has value 1 with probability 1/2, and 0 otherwise. The
optimal policy opens both boxes (x1 = x2 = 1). For the selection w.l.o.g. break ties in favor
of box 1: y1,1 = 1/2 (box 1 has value 1), y2,1 = 1/4 (box 1 has value 0, box 2 value 1) and
y1,0 = 1/4 (both boxes value 0). The reward is 3/4. In contrast, the optimal LP solution
sets x1 = x2 = 1, and y1,2 = y2,1 = 1/2 and gets a value of 1.

We use Algorithm 8 to compute a non-adaptive policy for opening the boxes.

Theorem 20. Algorithm 8 obtains an expected reward of at least 1
8

∑
i,v v · y∗i,v. Hence, the

adaptivity gap for k-ProbeMax is at most 8.

4.1. K-PROBING AND ADAPTIVITY GAP 53

Proof. Consider the simulation in Algorithm 9. The simluation clearly yields inferior reward,
since it replaces choosing the best opened box in line 3 by a different, probabilistic choice.
Upon opening a box, the algorithm directly decides to choose the box (by breaking from the
loop) or discard it. Hence, the simulation is solving a harder, online version of the problem
in the spirit of the Prophet problem.

We show the theorem for the inferior expected reward achieved by the simulation.
� Again, use indicator variable Yi,v = 1 if box i is opened, contains value v and is chosen,
(and Yi,v = 0 otherwise)

� Loop does not reach box i ⇒ Yi,v = 0.
� Events (a) Reach box i, (b) Open box i, (c) Choose box i are independent:
� (a) depends only on coin flips in rounds 1, . . . , i,
� (b) depends on independent coin flip to decide the opening,
� (c) depends on independent coin flip based on value v of box i, which is irrelevant for
other events

Hence,

Pr[Yi,v = 1] = Pr[Yi,v = 1 | loop reaches box i] · Pr[loop reaches box i]

=
x∗i
4
· qi,v ·

y∗i,v
x∗i · qi,v

· Pr[loop reaches box i]

=
y∗i,v
4
· Pr[loop reaches box i]

We show below that Pr[loop reaches box i] ≥ 1/2. Then the expected reward is

E

[∑
i,v

Yi,v · v

]
=
∑
i,v

v · Pr[Yi,v = 1] ≥
∑
i,v

v ·
y∗i,v
4
· 1
2
=

1

8
·
∑
i,v

v · y∗i,v

and the theorem is proved.

Now Pr[loop reaches box i] ≥ 1/2 follows when Pr[loop does not reach box i] ≤ 1/2. Using
a union bound, we see

Pr[loop does not reach box i]

= Pr[at least k boxes opened or at least one box chosen in rounds 1, . . . , i− 1]

≤ Pr[at least k boxes opened in rounds 1, . . . , i− 1]

+ Pr[at least one box chosen in rounds 1, . . . , i− 1]

For each of the latter probabilities, we use Markov inquality to bound them to at most 1/4.

Suppose Xi = 1 if box i is opened, and 0 otherwise. For the expected number of boxes
opened in rounds 1, . . . , i− 1

E

[∑
i′<i

Xi′

]
=
∑
i′<i

Pr[Xi′ = 1] ≤
∑
i′<i

Pr[Xi′ = 1 | loop reaches box i′] =
∑
i′<i

x∗i′/4 ≤
k

4

54 CHAPTER 4. PROBING AND TESTING

since (x∗, y∗) is a feasible solution to LP (4.2). Hence, by Markov inequality,

Pr[at least k boxes opened in rounds 1, . . . , i− 1] ≤ 1/4.

Similarly, for the expected number of boxes chosen in rounds 1, . . . , i− 1

E

[∑
i′<i,v

Yi′,v

]
=
∑
i′<i,v

Pr[Yi′,v = 1] ≤
∑
i′<i,v

Pr[Yi′,v = 1 | loop reaches box i′] =
∑
i′<i,v

y∗i′,v/4 ≤
1

4

and, by Markov inequality,

Pr[at least one box chosen in rounds 1, . . . , i− 1] ≤ 1/4.

4.2 k-Testing

Rather than probing a decision alternative and learning its precise value, in many applications
we can only test it, and the test gives some partial information about the value. Consider,
for instance, n different vaccines for a disease. We only learn the effectiveness of a vaccine via
testing, where repeated testing leads to a more precise estimate about the exact performance.
Likewise, consider hiring a job candidate. As part of the application process, we invite
candidates for an interview and test their abilities. Repeated testing of a candidate leads to
a more precise estimate on the quality of that candidate.

There are many plausible ways how to model a test that partially reveals the valuations of
an alternative. For simplicity we consider the following basic k-TestMax problem:

� There are n closed boxes. Each box i contains some prize of non-negative value vi.
� Each box i has a distribution Di written on it. The realization of the prize inside is
drawn initially vi ∼ Di independently at random.

� There are k tests. Each test can be applied to any of the boxes.
� If box i gets tested, we get a new distribution Di that describes the realization
of box i more precisely.

� After k tests, choose any box that was tested at least once. We get the realization of
the prize in the chosen box.

� Goal: Maximize the prize in the chosen box

What happens when we test a box?
� In the beginning, nature draws realization of box i, let the value be v′i ∼ Di.
� We define regions of the support of Di with different granularity:

Rj,ℓ =

{
v

∣∣∣∣ j2ℓ < Pr[vi ≤ v] ≤ j + 1

2ℓ

}
� The d-th test of box i reveals the region of granularity 2−d that contains v′i:
Test 1 of box i reveals j1 ∈ {0, 1} s.t. v′i ∈ Rj1,1

Test 2 of box i reveals j2 ∈ {2j1, 2j1 + 1} s.t. v′i ∈ Rj2,2

Test 3 of box i reveals j3 ∈ {2j2, 2j2 + 1} s.t. v′i ∈ Rj3,3

etc.

4.2. K-TESTING 55

� Testing is like a “binary search” over the support regions
� Discrete Di: To apply the definition of regions, the tests split realizations with the
same value into auxiliary ones – exactly the same way as we did for quantiles in the
IID-Prophet problem (c.f. Section 3.1.2)

[Pic: Distribution, Region, another test splits region in the middle, prob. 1/2 to be in the
higher subregion]

Example 4. n = 2 boxes and k = 3 tests, both D1 = D2 = Uniform{1, 4, 5, 10}.
� Apply first test to box 1. Note R0,1 = {1, 4} and R1,1 = {5, 10}. Based on outcome
we know v1 ∼ Uniform{1, 4} or v1 ∼ Uniform{5, 10}.

� Apply second test to box 2. If the two tests return different regions, we can already
identify the box with the best prize.

� Otherwise, either v1, v2 ∈ R0,1 or v1, v2 ∈ R1,1.
� v1, v2 ∈ R0,1: Apply the third test to box 1. If v1 ∈ R0,2 = {1}, then box 2 is optimal.
Otherwise v1 ∈ R1,2 = {4} and box 1 is optimal.

� v1, v2 ∈ R1,1: Apply the third test to box 1. If v1 ∈ R2,2 = {5}, then box 2 is optimal.
Otherwise v1 ∈ R3,2 = {10} and box 1 is optimal.

We always identify a box with an optimal prize. Obviously, this testing policy is optimal. ■

Finding an optimal testing policy in k-TestMax can be formulated as an MDP. The exact
formulation is left as an exercise. We only observe that the number of possibilities to apply
k tests on n boxes is nk and, thus, prohibitively large.

Rather than finding an optimal testing policy, we are interested in bounding the performance
loss of optimal testing vs. optimal probing. Consider an instance with n boxes, their
distributions, and any value k ≥ 1. How much expected value do we lose because we cannot
probe (and see) but only test the value of a box? It turns out the difference is only a constant
factor, so probing is not much more powerful than testing.

Theorem 21. For any instance with n boxes and any given value k, the expected reward of
the optimal policies in k-TestMax and k-ProbeMax differ by at most a constant factor.

k > n makes no sense for probing. It only gives more power in testing. Hence, w.l.o.g. we
restrict attention to k ≤ n. Also, we prove the theorem only in the IID-case, with prizes
in all boxes being identically, independently distributed with Di = D.

Let OPTp be the expected reward for the optimal policy of k-ProbeMax:
� All boxes are IID, no adaptivity, simply open any set of k boxes.
� W.l.o.g. we pick the first k boxes, thus OPTp = E[maxki=1 vi]

Example 5. Consider a gold-nugget distribution:
� Pr[vi = k] = 1/k and Pr[vi = 0] = 1− 1/k, hence E[vi] = 1.
� Probing k entries yields value of 0 ⇔ all opened prizes 0.
� Happens w. prob. (1− 1/k)k ≤ 1/e. Hence OPTp ≥ k · (1− 1/e) = Θ(k).

What are intuitive testing strategies? Test k boxes once.
� Each tested box i in region R0,1 or R1,1.

56 CHAPTER 4. PROBING AND TESTING

Algorithm 10: Consecutive testing towards the (1− 1/k)-quantile

1 k′ ← 2⌈log2 k⌉, i← 0 // k′ smallest power of 2 with k′ ≥ k
2 while i < n and less than k tests performed do
3 i← i+ 1, j ← 0
4 repeat
5 j ← j + 1
6 Apply next test to box i

7 until (j = log2 k
′) or (vi ̸∈ R2j−1,j) or (k tests performed in total)

8 if j = log2 k
′ and vi ∈ Rk′−1,log2 k

′ then return box i

9 return arbitrary tested box

� If vi ∈ R0,1, then vi = 0 with probability 1. Otherwise, E[vi | vi ∈ R1,1] = 2
� Hence, we can at best ensure an expected value of 2.

[Pic: Gold nugget, regions, conditional expectation]

Test the box with highest conditional expectation.1

� First test: box 1. If v1 ∈ R0,1, then v1 = 0 < 1 → never test box 1 again, test box 2.
� Suppose otherwise, then E[v1 | v1 ∈ R1,1] = 2 > 1 → continue testing box 1.
� Second test: box 1. v1 ∈ R2,2 or vi ∈ R3,2.
� If v1 ∈ R2,2, then v1 = 0 → never test box 1 again, test box 2.
� Suppose otherwise, then E[v1 | v1 ∈ R3,2] = 4 > 1 → continue testing box 1.
� etc.

Overall, we test box 1 until we know v1 = 0 or v1 = k. Suppose k = 2j for some j > 1, then
this requires at most j tests. If v1 = k, box 1 is optimal. Otherwise, start testing box 2,
until we know v2 = 0 or v2 = k, and so on.

One can verify that this is indeed the optimal testing policy for the gold-nugget distri-
bution when k = 2j < n. How much expected value does it obtain? ■

In Algorithm 10 we generalize the consecutive testing policy from the example to the entire
IID case. It is very closely related to Algorithm 5 for the IID-Prophet problem.

Some observations:

� The algorithm picks k′ as a power of 2 such that k ≤ k′ < 2k
� It tests boxes consecutively. Each box is tested at most log2 k

′ times in a row.
� Every time a box i is tested, it should refine to the better region – first to region R1,1,
then to R3,2, then to R7,3, etc.

� Once box is not in the better region, repeat-loop breaks → start testing next box
� If box completes log2 k

′ tests with better region, it is chosen.
� If we don’t find a box that refines to better region for log2 k

′ many tests or if we run
out of tests before finding one, we choose any tested box

1Break ties according to smallest box number.

4.2. K-TESTING 57

Theorem 22. Algorithm 10 achieves an expected reward of(
1− 1

4
√
e
− o(1)

)
·OPTp ,

where the asymptotics is in k (and n, since k ≤ n).

Proof. A box that gets tested log2 k
′ times and turns out to be in the best region Rk′−1,log2 k

′

is called a great box. We choose the first great box that we find.
� A great box has a value in the top 1/k′-fraction of the support of D
� Put differently, the value of a great box is above the (1− 1/k′)-quantile2 of D.
� Recall one of the main arguments from the proof of Theorem 11:

E[vi | vi above (1− 1/k′)-quantile] ≥ E[vj | vj optimal among k′ IID realizations]

≥ E[vj | vj optimal among k IID realizations]

= E[k
max
j=1

vj] = OPTp

→ Every great box has an expected value of at least OPTp.

The approximation factor w.r.t. OPTp is given by the probability to find a great box. The
next lemma shows that this probability is

α = 1− 1
4
√
e
− o(1) ,

where the asymptotics are in k (and n, since we assume k ≤ n). This proves the theorem.

Lemma 12. The probability that Algorithm 10 runs out of tests before finding a great box is
at most 1/ 4

√
e+ o(1).

Proof. The sequence of tests can be seen as a sequence of Benoulli trials:
� Every test further subdivides the regions by a factor of 2.
� Suppose that ℓ tests were applied and vi ∈ Rj,ℓ

� Now apply the (ℓ+1)-th test. Result is one of two events: vi ∈ R2j,ℓ+1 or vi ∈ R2j+1,ℓ+1

� If vi ∈ R2j+1,ℓ+1 we say the test is a success, otherwise a failure
� Regions have same probability mass → conditional probability of each event is 1/2.
� Conditional probability does not depend on condition → success and failure events
constitute a sequence of independent Bernoulli trials!

The algorithm can apply k ≤ n tests. Upon each failure, it starts testing a new box. A
great box is found ⇔ there is a consecutive sequence of at least r = log2(k

′) successes in a
sequence of k independent Benoulli trials.

[Pic: Algorithm 10 as Markov chain, Bernoulli trials, run length]

To avoid trivialities, we assume log2 k
′ > 1 and, thus k > 2. Each trial has success probability

1/2. Classic results in probability theory show that:

2Note that for discrete distributions, we assume tests work using auxiliary realizations to formally ensure
existence of such a quantile, similar to our adjustments in Section 3.1.2.

58 CHAPTER 4. PROBING AND TESTING

1. The probability of no success run of length r = log2 k
′ (i.e., no great box found) is

q = A1 + A2 + . . . Ar ,

where

A1 =
2− x

r + 1− rx
· 1

xk+1
and |Ai| ≤

4

2k+13r
,

for all i = 2, . . . , r = log2 k
′.

2. Here x is the root with smallest absolute value of f(y) = 1− y +
(
y
2

)r+1
.

3. f(y) has a single positive root different from 2. This is the root x with smallest absolute
value.

In Lemma 13 below we show that 1+ 1
2k′
≤ x ≤ 1+ 1

k′
. This allows to conclude, for all k > 1,

q = A1 + (r − 1)
4

2k+13r

=
2− x

r + 1− rx
· 1

xk+1
+

r − 1

2k−13r

≤
1− 1

2k′

1− log2 k
′

k′

· 1

(1 + 1
2k′

)k+1
+ o(1) plugging in bounds for x and r

≤ (1 + o(1)) · 1

(1 + 1
2k′

)(2k
′+1) k+1

2k′+1

+ o(1) plugging in r = log2 k
′

≤ (1 + o(1)) · 1

e
k+1

2k′+1

+ o(1) since (1 + 1/z)z+1 > e for all z > 0

≤ (1 + o(1)) · 1
4
√
e
+ o(1) since (k + 1)/(2k′ + 1) > k/(2k′) ≥ 1/4

Lemma 13. Let r ∈ N≥2, and x0 be the unique positive root of f(y) = 1 − y +
(
y
2

)r+1
that

is different from 2. Then, 1 + 1
2r+1 < x0 < 1 + 1

2r
.

Proof. f(y) has a unique positive root that is different from 2. We show that f(1+ 1
2r+1) > 0,

and f(1+ 1
2r
) < 0 for all r ∈ N≥2. Since f is continuous, there must be a root of f in between.

First, for the smaller value

f

(
1 +

1

2r+1

)
= 1−

(
1 +

1

2r+1

)
+

1

2r+1

(
1 +

1

2r+1

)r+1

> − 1

2r+1
+

1

2r+1
· 1 = 0 .

Second, we assume r ≥ 3 and observe for the larger value

f

(
1 +

1

2r

)
= 1−

(
1 +

1

2r

)
+

1

2r+1

(
1 +

1

2r

)r+1

= − 1

2r
+

1

2r+1

(
1 +

1

2r

)r (
1 +

1

2r

)

4.3. PROBING WITH COST 59

=
1

2r+1

(
−2 +

(
1 +

1

2r

)r (
1 +

1

2r

))
<

1

2r+1

(
−2 + e

r
2r

(
1 +

1

2r

))
<

1

2r+1

(
−2 + e

3
8

(
1 +

1

23

))
since r/(2r) < 3/8 when r ≥ 3

<
1

2r+1
(−2 + 2) = 0 .

For r = 2, the same holds, since f
(
1 + 1

4

)
= −3/512 < 0.

4.3 Probing with Cost

We consider the Pandora Box problem, a monetary variant of probing:
� n boxes, in each box a stochastic, non-negative prize vi ∼ Di

� Each box has an opening cost ci ≥ 0.
� Cost ci and distribution Di are known in advance
� We can open any subset of boxes (adaptively).
� Given a set of open boxes, we can pick a single prize of any opened box.
� Goal: Maximize chosen prize minus sum of opening costs:

max
i open

vi −
∑
i open

ci

This variant captures many economic investment problems, where we want to maximize
income minus investment. Opening cost can be interpreted as an “exploration cost” e.g.,
cost of market exploration (e.g., customer demand for a new tech gadget, or interest in
advertising services, etc.) or assessment of production cost/benefit (e.g., when drilling for
mineral resources in an area, etc.). Such assessments are usually conducted before engaging
into the actual activity (e.g., producing the gadget, drilling in the area, etc.)

The name Pandora Box comes from a work by Weizman on the problem. The reference
to Greek mythology is maybe debatable. In any case, one might indeed regret opening a box
– it costs you money, but eventually you might learn that the box only offers you a small
prize inside. If you find a larger prize later on, opening the box was worthless.

Pandora Box can be formulated as an MDP with a huge state space (details as exercise).
Nevertheless, in this section we will design an optimal policy, which can be computed quickly
and represented compactly.

Example 6. There are n = 2 boxes. Box 1 has prize v1 = 4 with probability 1/2 and v1 = 0
otherwise. Box 2 has prize v2 = 2 with probability 1. Opening costs are c1 = c2 = 1. An
optimal policy:

� Open box 1. If v1 = 4, stop opening boxes, choose box 1. Reward: 4− 1 = 3
� Otherwise, open box 2, choose box 2. Reward: 2− 2 = 0
� Overall expected reward: 3 · (1/2) + 0 · (1/2) = 1.5

60 CHAPTER 4. PROBING AND TESTING

Algorithm 11: Pandora Box using Fair Caps

1 Compute the fair cap ρfi for each box

2 Sort boxes in non-increasing order of ρfi
3 i∗ ← 1, i← 0
4 repeat
5 i← i+ 1
6 open box i
7 if vi > vi∗ then i∗ ← i

8 until (i = n) or (vi∗ ≥ ρfi+1)
9 return box i∗

Why is this optimal? Suppose we instead open box 2 first. If we stop, reward is 1. If we
continue to open box 1, expected reward is also 1. ■

We first consider a single box – when should we open it? Clearly, if ci ≥ E[vi] the prize
does not justify the investment. This holds also if there are several boxes. Hence, w.l.o.g.
E[vi] ≥ ci for all boxes (if not, ignore the box).

There is an investor that offers a deal:
� If we open a box, investor pays opening cost ci, but keeps some part of the prize –
everything above a cap ρi (defined below)

� Investor gets bonus above cap: bi = max{0, vi − ρi}
� We get value up to the cap: κi = min{vi, ρi} = vi − bi.
� What is a good deal for the investor? Depends on the cap ρi
� A fair cap ρfi yields E[bi] = ci. Then expected investor utility is E[bi]− ci = 0.
� Fair cap always exists:
ρi = 0⇒ E[bi] = E[vi] ≥ ci, and ρi = vi ⇒ E[bi] = 0 ≤ ci
E[bi] continuous in ρi, so fair cap exists.

Example 6 (continued). Consider box 1.
� If ρ1 ≥ 4, then κ1 = v1 and b1 = 0.
� Otherwise, κ1 = ρ1 and b1 = 4− ρ1 when v1 = 4, and κ1 = b1 = 0 when v1 = 0.
So then E[κ1] = ρ1/2 and E[b1] = (4− ρ1)/2 = 2− ρ1/2.

� Fair cap ρf1 = 2, since then E[b1] = 2− 1 = c1.
■

Algorithm 11 opens boxes in non-increasing order of fair cap ρfi . It stops when (all boxes
are open, or) the best current prize vi∗ is at least the best fair cap of any closed box.

ρfi is an estimate of the prize we get from box i after subtraction of the cost ci. We start
with the most promising box and continue until the expected gain from opening a (most
promising) remaining box is 0.

Theorem 23. Algorithm 11 computes an optimal policy for the Pandora Box problem.

First, consider an arbitrary policy π. We use two sets of indicator variables for π:

4.3. PROBING WITH COST 61

� Ii = 1 if π opens box i (i.e., (I)nspects the box)
� Ai = 1 if π chooses the prize in box i (i.e., (A)ccepts the box)

Let us formulate the expected reward of π. It turns out that the expected reward is the
capped value of the accepted box minus the bonus of every inspected (non-accepted) box.

Lemma 14. The expected reward of any policy π is∑
i∈[n]

E[Aiκi − (Ii − Ai)bi]

Proof. Note that the reward is

E

∑
i∈[n]

(Aivi − Iici)

 by definition

=
∑
i∈[n]

(E[Aivi]− E[Ii]ci) linearity of expectation

=
∑
i∈[n]

(E[Aiκi] + E[Aibi]− E[Ii]ci) since vi = κi + bi, and linearity of expectation

=
∑
i∈[n]

(E[Aiκi] + E[Aibi]− E[Ii]E[bi]) ρfi is fair cap ⇒ ci = E[bi]

=
∑
i∈[n]

(E[Aiκi] + E[Aibi]− E[Iibi]) since Ii and bi are independent

To see the last equation, bi depends only on the fixed value ρfi and the random value vi.
However, Ii cannot depend on vi – we only see the realized value after we inspect the
box. Hence, Ii and bi are independent, so E[Ii]E[bi] = E[Iibi]. So finally, by linearity of
expectation, the expected reward is∑

i∈[n]

(E[Aiκi] + E[Aibi]− E[Iibi]) =
∑
i∈[n]

E[Aiκi − (Ii − Ai)bi]

Now consider Algorithm 11. We prove optimality in two steps in the subsequent lemmas.

Lemma 15. Algorithm 11 always selects the box of highest capped value. That is, with
probability 1 ∑

i

Aiκi = max
i
κi.

Proof. The key insight is that over the course of the loop, the best observed prize vi∗ is only
increasing, while the maximum fair cap of a closed box ρfi+1 is only decreasing.

ilast is index of last opened box, i∗ ≤ ilast box of accpeted prize. We want to show κi ≤ κi∗
for all i. Consider two cases: The accepted prize exceeds its cap or not.

62 CHAPTER 4. PROBING AND TESTING

Case vi∗ ≤ ρfi∗: Then κi∗ = vi∗ . For i ≤ ilast we have

κi ≤ vi by definition

≤ vi∗ since vi∗ highest prize up to ilast

= κi∗ since vi∗ ≤ ρfi∗

For i > ilast we have

κi ≤ ρfi by definition

≤ ρfilast+1 by monotonicity

≤ vi∗ since we stopped opening boxes

= κi∗ since vi∗ ≤ ρfi∗

Case vi∗ > ρfi∗: Then κi∗ = ρfi∗ . Observe that i∗ = ilast because ρ
f
i∗+1 ≤ ρfi∗ , so we do not

open box i∗ + 1. For i < ilast, we have

κi ≤ vi by definition

≤ ρfilast since we did not stop opening boxes

= κi∗ observed above

For i > ilast, we have

κi ≤ ρfi by definition

≤ ρfilast by monotonicity

= κi∗ observed above

Lemma 16. Algorithm 11 fulfills (Ii − Ai)bi = 0 for all i ∈ [n] with probability 1.

Proof. If bi = 0, or if Ii = 0 (and hence Ai = 0), then statement is trivial.
Suppose Ii = 1 and bi > 0.

� The policy opens box i with bi > 0. Then vi ≥ ρfi , so it is the last box to be opened.
� Box i opened ⇒ maxmimum prize in boxes 1, . . . , i− 1 at most ρfi .
� Hence, vi is highest prize in boxes 1, . . . , i, and so Ai = 1.

Proof of Theorem 23. Consider any policy π′. We denote its indicator variables by A′
i and

I ′i, for i ∈ [n]. By Lemma 14, the expected reward is∑
i∈[n]

E[A′
iκi − (I ′i − A′

i)bi] ≤
∑
i∈[n]

E[A′
iκi] ≤ E[max

i
κi]

For the policy computed by Algorithm 11, we apply Lemmas 15 and 16 pointwise to the two
terms inside the expectation to see that the reward is∑

i∈[n]

E[Aiκi − (Ii − Ai)bi] = E[max
i
κi]

Chapter 5

Recommendation

5.1 Bayesian Persuasion

In Internet markets, information is nowadays a critical resource. Large retailers (e.g., Ama-
zon), booking platforms (Booking.com, hotels.de) or review websites (TripAdvisor) issue
recommendations for products, services, hotels, restaurants, locations, etc. However, while
a customer often strives to make a decision (e.g., book a hotel, buy a product) that gives
the best performance/experience, the platform can have very different preferences based on,
e.g., provisions by product manufacturers or large service providers.

Consider the following stylized recommendation scenario.
� Two agents called sender S and receiver R
� n boxes. Box i contains a prize-pair (si, ri), where si ≥ 0 is the prize for S and ri ≥ 0
the prize for R

� Set Θ of possible prize-pair vectors θj = ((s1j, r1j), . . . , (snj, rnj)), j ∈ [m]
� Distribution D over Θ. D is known to both S and R apriori.
� Set Σ of possible recommendations or signals that S can send to R.

We study a messaging problem of S called Persuade.
� S chooses a signaling scheme φ. φ maps every vector θj of prize-pairs in the boxes to
a distribution over Σ

� Nature draws the prizes in the boxes θ ∼ D
� S sees θ. R does not see θ, knows only φ and D.
� S sends the (randomized) signal σ = φ(θ). R sees σ and chooses a box i with highest
conditional expectation E[ri | σ].

� S and R receive their prize in the chosen box.
� Goal: Find φ∗ that yields highest expected prize si in the box chosen by R.

Example 7. Retailer S wants to sell a washing machine to customer R. There are two
models: a fancy one (box 1) and a solid one (box 2). The fancy one is either great or
mediocre, both with prob. 1/2. The manufacturer pays S a provision if she sells the fancy
one. If great and R picks it, then s2 = 10 and r2 = 3. Otherwise, s2 = 10 and r2 = 0. The
solid one has values s1 = r1 = 2 with prob. 1. Hence, Θ is composed of θ1 = ((10, 3), (2, 2))
and θ2 = ((10, 0), (2, 2)), and in D both have prob. 1/2.

63

64 CHAPTER 5. RECOMMENDATION

In the beginning, S decides how to send recommendations. Suppose she commits to reveal
the quality of machine 1 truthfully:

� S sees θ. If θ = θ1, fancy machine is great, S sends φ(θ1) = 1. Otherwise φ(θ2) = 2.
� For R the recommended one is always the best. He knows this and picks it.
⇒ Expected reward for S is 10 · 1/2 + 2 · 1/2 = 6.

Is this optimal for S? She wants to sell the fancy machine even if it is mediocre. Suppose
she always recommends it, φ(θ1) = φ(θ2) = 1.

� S sees θ and sends signal 1. Since signal is always 1, it contains no information for R.
� R’s choice reduces to compare his unconditional expectations.
� Fancy machine has only expected value 1.5 < 2, R always picks solid machine.
⇒ Expected reward for S is 2.

Another scheme: φ(θ1) = 1, but φ(θ2) = 1 with prob. 1/2 and φ(θ2) = 2 otherwise.
� S sees θ and uses φ to generate the recommendation.
� R sees φ(θ) = 1 → happens in θ1 (always), or in θ2 w.prob. 1/2.
Expected utilities of R:

E[r1j | φ(θ) = 1] =
Pr[θ = θ1] · Pr[φ(θ1) = 1] · r11 + Pr[θ = θ2] · Pr[φ(θ) = 1] · r12

Pr[φ(θ) = 1]

=
1
2
· 1 · 3 + 1

2
· 1
2
· 0

1
2
· 1 + 1

2
· 1
2

=
3
2

1
2
+ 1

4

= 2

and

E[r2j | φ(θ) = 1] =
Pr[θ = θ1] · Pr[φ(θ1) = 1] · r21 + Pr[θ = θ2] · Pr[φ(θ) = 1] · r22

Pr[φ(θ) = 1]

=
1
2
· 2 + 1

4
· 2

1
2
+ 1

4

= 2

� Break ties in favor of S: Machine 1 is an optimal choice for R.
� R sees φ(θ) = 2 → happens only in θ2, so 2 is unique optimal choice for R.
⇒ Expected reward for S is 10 · 1/2 + 10 · 1/4 + 2 · 1/4 = 8

It can be shown that this is indeed the optimal signaling scheme for S. ■

Upon recommendation “1”, both machines have the same conditional expectation for R. S
could add tiny ε in φ to induce a strict preference for machine 1 for R. We avoid messing
around with ε’s – instead always assume R breaks ties in favor of S.

While the space of signals Σ is arbitrary, we can w.l.o.g. restrict attention to signaling
schemes, in which S just recommends a single box, such that R wants to take that box.

A signaling scheme is called direct if every signal just recommends taking a single box, i.e.,
Σ = [n]. A direct scheme is called persuasive if the recommended box always gives the
best expected reward for R.

5.1. BAYESIAN PERSUASION 65

Proposition 3. For every signaling scheme φ there is a direct and persuasive scheme φ′

such that S obtains the same expected value in φ and φ′.

Proof. Exercise.

If the set Θ of m prize-pair vectors is represented explicitly, finding an optimal signaling
scheme φ∗ can be done in polynomial time.

Theorem 24. An optimal signaling scheme φ∗ can be obtained by solving a linear program
with nm variables and O(n(n+m)) constraints.

Proof. We concentrate on finding a direct and persuasive scheme φ.
� φ yields a distribution over Σ = [n] for every possible vector of prizes θj, j ∈ [m].
� If signal σ ∈ [n] is sent, then R must finds it in his interest to take box σ.
� Notation: qj = Pr[θ = θj] for the prob. that θj is drawn and xij = Pr[φ(θj) = i] for
the prob. that φ issues signal i in state θj.

� The expected reward of S is ∑
j∈[m]

qj
∑
i∈[n]

sij · xij

� φ must be persuasive, so R must find it in his interest to follow the recommendation.
Hence

E[rij | φ(θ) = i] ≥ E[ri′j | φ(θ) = i]

where the conditional expectations are∑
j∈[m] qj · xij · rij
Pr[φ(θ) = i]

≥
∑

j∈[m] qj · xij · ri′j
Pr[φ(θ) = i]

� If Pr[φ(θ) = i] > 0, this is equivalent to∑
j∈[m]

qjrij · xij ≥
∑
j∈[m]

qjri′j · xij (5.1)

Otherwise, if Pr[φ(θ) = i] = 0, then signal i is never issued. Then qjxij = 0 for all
j ∈ [m] and hence

∑
j∈[m] qjri′jxij = 0 for all boxes i′ ∈ [n]. As such, (5.1) still holds.

Overall, finding a scheme φ is equivalent to solving the LP

Maximize
∑
j∈[m]

∑
i∈[n]

qjsij · xij

subject to
∑
j∈[m]

qjrij · xij ≥
∑
j∈[m]

qjri′j · xij ∀i, i′ ∈ [n]∑
i∈[n]

xij = 1 ∀j ∈ [m]

xij ≥ 0 ∀i ∈ [n], j ∈ [m].

(5.2)

66 CHAPTER 5. RECOMMENDATION

5.1.1 IID Boxes

In many interesting domains, the number of possible prize vectors for the boxes is exponen-
tial. We first consider Persuade with IID-Boxes. Here, we have a distribution for the
prize-pairs in each box, and boxes are IID distributed.

� A single distribution D over a set Θ = {(sj, rj) | j ∈ [m]} with m possible prize pairs.
� Θ and D describe the possible prize-pairs of one box and their probabilities.
� The prize-pair in each box is drawn independently from D.
� Notation: qj = Pr[θ = θj], the probability of prize-pair θj in D.

Note that even if distribution D has only |Θ| = 2 possible outcomes for the pair in each box
i, the number of possible prize vectors for the n boxes is as large as 2n.

We cannot explicitly write down LP (5.2) or an optimal scheme φ∗ in polynomial time.
Still, there is a (rather intricate) way to implicitly compute and represent an optimal
scheme φ∗. We here consider a much more simple approach that manages to obtain a
good approximately-optimal solution. Our algorithm will have similarities with algorithms
for Prophet and k-TestMax problems in the IID case. Overall, the analysis approach
again uses LPs to overestimate the optimum, as we did in Section 4.1.

We analyze the structure of φ∗ and design a simpler and smaler LP using only a subset of
constraints that φ∗ must satsify. The optimal LP value is an upper bound for the expected
reward of φ∗. Algorithm 12 given below then turns the LP-optimum into a signaling scheme.

Note that there is an optimal scheme φ∗ that is symmetric, i.e., it satisfies

Pr[φ∗(θ1, . . . , θn) = i] = Pr[φ∗(θπ(1), . . . , θπ(n)) = π(i)]

for every i ∈ [n] and every permutation π. Intuitively, if the same set of realizations occur in a
different permutation in the boxes, we also permute the signal distributions in φ∗ accordingly.
This is natural, since all permutations of the prize pairs have the same probability to arise
in the boxes.

Lemma 17. There is an optimal signaling scheme φ∗ for Persuade with IID-Boxes
that is symmetric.

Proof. Consider any optimal scheme φ∗. Now suppose there is a hurricane: Nature permutes
all boxes in the beginning uniformly at random before S can look into them. Then, since
the boxes are IID, φ∗ applied to the permuted box set remains direct and persuasive and
obtains the same optimal expected reward for S.

We simply make this permutation step part of our scheme! Let’s extend φ∗ to φ′ by
an initial, uniform random permutation of the boxes. Then, clearly, the scheme is direct,
persuasive, obtains an optimal expected reward for S, and also satisfies

Pr[φ′(θ1, . . . , θn) = i] =
1

n!

∑
Permutation π′

Pr[φ∗(θπ′(1), . . . , θπ′(n)) = π′(i)]

= Pr[φ′(θπ(1), . . . , θπ(n)) = π(i)]

5.1. BAYESIAN PERSUASION 67

Symmetry of φ∗ has drastic consequences. From the perspective of R, φ∗ yields only two
conditional distributions: One for the prize pairs in a recommended box i (no matter which
one), and one for the prize pairs in a non-recommended box i′ (no matter which box i was
recommended and which box i′ ̸= i is chosen).

Lemma 18. Any symmetric optimal scheme φ yields a single conditional distribution for
every recommended box i ∈ [n]. It yields a single conditional distribution for every non-
recommended box i′ ∈ [n], no matter which box i ̸= i′ is recommended.

Proof. Consider a symmetric φ and assume that a specific prize pair is in box i ∈ [n].
� For each θj ∈ Θ and all i ∈ [n] we denote by

xij = Pr[θj in box i ∧ φ signals i].

� By permuting the prizes in all boxes, we see that for each pair of boxes i, i′ ∈ [n]

xij = xi′j = xj.

This shows that, no matter what box i is recommended,

Pr[θj in box i | φ signals i] =
Pr[θj in box i ∧ φ signals i]

Pr[φ signals i]
= n · xj

since Pr[φ signals i] = 1/n by symmetry ⇒ First statement of the lemma follows.
� For any i ̸= i′, we denote by

yiji′ = Pr[θj in box i ∧ φ signals i′].

� Due to above, the probability that qj is in box i and the signal does not yield box i is
qj − xij = qj − xj. By symmetry, for all other boxes i′, i′′ ̸= i

yiji′ = yiji′′ =
qj − xj
n− 1

.

Symmetry also implies yiji′ = yi′′ji′ for all i, i
′′ ̸= i′. Hence, the conditional probability

Pr[θj in box i′ | φ signals i] =
n

n− 1
(qj − xj)

for all i ̸= i′ and the second statement follows.

We build an LP using notation from the proof of Lemma 18 for an optimal symmetric φ∗.
� The expected reward of φ∗ is the expected value of S for a recommended box:∑

i∈[n]

∑
j∈[m]

xijsj =
∑
j∈[m]

nsj · xj

� Clearly, 0 ≤ xj ≤ qj by definition. Symmetry implies for every box i

Pr[φ∗ signals i] =
∑
j∈[m]

Pr[θj in box i ∧ φ signals i] =
∑
j∈[m]

xj =
1

n
.

68 CHAPTER 5. RECOMMENDATION

Algorithm 12: (1− 1/e)−1-approximation for Persuade with IID-Boxes

1 Solve LP 5.3, let x∗ be an optimal solution
2 for each box i = 1, . . . , n do
3 Let θj = (sj, rj) be realized prize-pair in box i
4 With prob. x∗j/qj label box i “yes”, otherwise label i “no”

5 if ∃ at least one yes-box then return uniform random yes-box
6 else return uniform random no-box

� Lemma 18 and persuasiveness yield the following constraint

E[ri | φ∗ signals i] =
∑
j∈[m]

nxj · rj ≥
∑
j∈[m]

n

n− 1
(qj − xj) · rj = E[ri′ | φ∗ signals i]

Multiplying by n/(n− 1) implies∑
j∈[m]

(n− 1)xjrj ≥
∑
j∈[m]

(qj − xj)rj,

and adding
∑

j∈[m] xjrj we obtain∑
j∈[m]

nrj · xj ≥
∑
j∈[m]

qjrj = rE,

where rE is the (unconditional) expected reward of any box for R.

We collect the previous observations and formulate the following LP.

Maximize
∑
j∈[m]

nsj · xj

subject to
∑
j∈[m]

nrj · xj ≥ rE∑
j∈[m]

xj =
1

n

xj ∈ [0, qj] ∀j ∈ [m]

(5.3)

Some observations:
� The second constraint mirrors the idea of a (1 − 1/n)-quantile – the combination of
realization and recommendation yields only a 1/n-fraction of probability mass.

� However, the LP is not simply taking a best 1/n-fraction of D that maximizes prizes
for S – it determines a 1/n-fraction that maximizes the value for S and guarantees at
least an average value for R.

� If we set xj according to φ∗, we obtain a feasible solution for the LP.

Algorithm 12 solves the LP optimally. Let x∗ be an LP-optimum. Note that the rounding
in line 4 is possible, since x∗j ∈ [0, qj] due to the last constraints of LP (5.3).

5.1. BAYESIAN PERSUASION 69

Similar as for the LP in Section 4.1, we observe that the value of x∗ can be strictly more than
the expected reward of the optimal signaling scheme φ∗: There are n = 2 boxes, and the
distribution over prize-pairs in each box is θ1 = (1, 1) and θ2 = (0, 0), each with probability
1/2. In φ∗, we signal any box that has value θ1. If both boxes have the same value, we
choose a box at random. Clearly, this is direct and persuasive. The expected value for S
(and R) is 3/4. Note that the optimal LP solution sets x∗1 = 1/2 and x∗2 = 0 and obtains a
value of 2 · 1/2 · 1 + 2 · 0 · 0 = 1.

Theorem 25. Algorithm 12 computes a direct and persuasive signaling scheme that obtains
a (1− 1/e)−1-approximation of the optimal expected reward of S for Persuade with IID-
Boxes.

Proof. We need to (a) bound the value of the scheme computed by Algorithm 12 and (b)
show that it is persuasive. Towards (a), the probability that box i is a yes-box is, by LP (5.3)

Pr[i yes-box] =
∑
j∈[m]

qj ·
x∗j
qj

=
∑
j∈[m]

x∗j =
1

n
.

Note that

Pr[θj in box i | i yes-box] = Pr[θj in box i ∧ i yes-box]
Pr[i yes-box]

=
qj · (x∗j/qj)

1/n
= n · x∗j , (5.4)

so every box has the same distribution conditioned on being a yes-box. Note that every box
also has the same distribution conditioned on being a no-box:

Pr[θj in box i | i no-box] = Pr[θj in box i ∧ i no-box]
Pr[i no-box]

=
qj · (1− x∗j/qj)

1− 1/n
=

n

n− 1
· (qj − x∗j).

(5.5)
Becoming a yes- or no-box is an independent event for each box, so with probability pyes =
1− (1− 1/n)n there is at least one yes-box. We pick uniformly at random among the yes- (if
available) and no-boxes (otherwise). Hence, the signaling scheme computed by Algorithm 12
is symmetric, and Lemma 18 applies.

Suppose R takes any recommended box. The expected reward for S due to yes-boxes is

pyes ·
∑
j∈[m]

n · x∗j · sj.

i.e., a pyes-fraction of the optimal LP value. This proves the approximation ratio, since
pyes ≥ 1− 1/e and the optimal LP value is more than the expected reward of φ∗.

Towards (b) and persuasiveness, the computed scheme has one conditional distribution for
every recommended box and one for every non-recommended box. Notation:

� r+E = expected value of R for any recommended box
� r−E = expected value of R for any non-recommended box

70 CHAPTER 5. RECOMMENDATION

Recall rE =
∑

j qjrj. With probability pyes the recommended box is a yes-box, otherwise a
no-box. Hence, by (5.4) and (5.5)

r+E = pyes
∑
j∈[m]

nx∗jrj + (1− pyes)
∑
j∈[m]

n

n− 1
· (qj − x∗j)rj

=

(
pyes −

1− pyes
n− 1

) ∑
j∈[m]

nx∗jrj + (1− pyes) ·
n

n− 1
· rE

≥
(
pyes −

1− pyes
n− 1

)
· rE + (1− pyes) ·

n

n− 1
· rE

=
1

n− 1
((n− 1)pyes − 1 + pyes + n− npyes) rE

= rE

Now consider box 1. By symmetry, it is recommended with probability 1/n, in which case
it has expected value r+E , and r

−
E otherwise. Overall, the expected value of box 1 is

rE =
1

n
· r+E +

(
1− 1

n

)
· r−E ≥

1

n
· rE +

(
1− 1

n

)
· r−E ,

which implies
(
1− 1

n

)
rE ≥

(
1− 1

n

)
r−E , and, thus, r

+
E ≥ rE ≥ r−E . This shows that it is

better for R to pick any recommended box than to pick any non-recommended box.

5.1.2 Independent Boxes

We generalize the previous arguments to independent (not necessarily identical) distribu-
tions. For the problem Persuade with Independent Boxes we use a very similar
notation as above.

� For every box i there is a distribution Di over a set Θi = {(sij, rij) | j ∈ [mi]} with mi

possible prize pairs
� Θi and Di describe possible prize-pairs of box i and their probabilities
� Prize-pair in each box is drawn independently from Di

� Notation: qij = Pr[θi = θij], the probability of prize-pair θij in Di

We make an additional assumption: The box i∗ with best apriori reward for R is deter-
ministic for R, i.e.,

ri∗,j = rmax
E ≥ E[ri] for all j ∈ [mi∗] and all i ∈ [m]. (5.6)

Alternatively, we can assume that R owns a prize of value rmax
E and must decide if one of

the boxes offer him a better deal. We say box i∗ is a satisfactory status quo (SSQ) box.
W.l.o.g. we relabel the boxes to have i∗ = n.

With SSQ box, the optimal scheme φ∗ is not necessarily symmetric, but still we can obtain
a constant-factor approximation. We again construct an LP whose optimal solution overes-
timates the expected reward of an optimal direct and persuasive scheme φ∗. Then φ∗ results

5.1. BAYESIAN PERSUASION 71

in a feasible solution with objective function value equal to the expected reward of φ∗. We
solve the LP optimally and round an optimal solution x∗ to obtain a direct and persuasive
scheme. The rounding deteriorates the expected reward only by a constant factor.

We again use the notation

xij = Pr[θij in box i ∧ φ∗ signals i].

To formulate the LP, we use the expected reward as objective function and identify a number
of constraints that φ∗ must satisfy.

� The expected reward of S in φ∗ is ∑
i∈[n]

∑
j∈[mi]

sij · xij

� Clearly, by definition 0 ≤ xij ≤ qij. Also, since φ
∗ is direct, it recommends a box with

probability 1, i.e., ∑
i∈[n]

∑
j∈[mi]

xij = 1.

� For persuasiveness of φ∗, we require that

E[ri | φ∗ signals i] =
∑
j∈[mi]

rij · Pr[θij in box i | φ∗ signals i]

=
∑
j∈[mi]

rij ·
Pr[θij in box i ∧ φ∗ signals i]

Pr[φ∗ signals i]

=
∑
j∈[mi]

rij ·
xij∑

k∈[mi]
xik

≥ rmax
E

where rmax
E is the reward of the SSQ box n for R. This is clearly necessary for persua-

siveness – R can always secure a reward of rmax
E , since the SSQ box achieves this value

deterministically.
� Note that

∑
k∈[mi]

xik = 0 implies
∑

k∈[mi]
xijrij = 0 in φ∗. Hence, we know that φ∗

actually satisfies ∑
j∈[mi]

xijrij ≥ rmax
E ·

∑
k∈[mi]

xik.

This leads to the following LP:

Maximize
∑
i∈[n]

∑
j∈[mi]

sij · xij

subject to
∑
j∈[mi]

rij · xij ≥ rmax
E ·

∑
j∈[mi]

xij∑
i∈[n]

∑
j∈[mi]

xij = 1

xij ∈ [0, qij] ∀i ∈ [n], j ∈ [mi]

(5.7)

72 CHAPTER 5. RECOMMENDATION

Algorithm 13: 4-approximation for Persuade with Independent Boxes and
SSQ box

1 Solve LP 5.7, let x∗ be an optimal solution
2 Let the SSQ box be i∗ = n
3 for each box i = 1, . . . , n− 1 do
4 Let θij = (sij, rij) be realized prize-pair in box i
5 With prob. x∗ij/2qij return box i

6 return box n

Theorem 26. Algorithm 13 computes a direct and persuasive signaling scheme that obtains
a 4-approximation of the optimal expected reward of S for Persuade with Independent
Boxes with SSQ box.

Proof. Algorithm 13 is an adaptation of Algorithm 12, and we use similar arguments for the
analysis. The algorithm considers the non-SSQ boxes sequentially in arbitrary order. The
rounding step in line 5 works since x∗ij ∈ [0, qij] by LP (5.7).

We say box i is a yes-box if it gets signaled during the for-loop. We have to show that (1)
the resulting scheme obtains a good expected reward for S and (2) it is pesuasive for R.

For the expected reward, we assume that R follows the signal. First, consider the event that
box i is not reached by the for-loop. Observe that

Pr[i not reached]

= Pr[i− 1 not reached ∨ (i− 1 reached ∧ i− 1 yes-box)]

≤ Pr[i− 1 not reached] + Pr[i− 1 reached ∧ i− 1 yes-box] by union bound

≤ Pr[i− 1 not reached] + Pr[i− 1 yes-box] by inclusion of events

≤ Pr[i− 1 not reached] +
∑

j∈[mi−1]

qi−1,j ·
x∗i−1,j

2qij

= Pr[i− 1 not reached] +
1

2

∑
j∈[mi−1]

x∗i−1,j

≤
i−1∑
i′=0

1

2

∑
j∈[mi′]

x∗i−1,j by induction

≤ 1

2
by constraint in LP (5.7)

Hence, Pr[i reached] ≥ 1/2.

It is easy to see1 that the following events are independent: (a) for-loop reaches box i, (b)
box i contains θij and (c) box i is a yes-box. As a result, the expected reward of S from

1Note that Algorithm 13 is similar in structure to Algorithm 9 for k-ProbeMax in Section 4.1, so the
arguments from the proof of Theorem 20 apply here.

5.1. BAYESIAN PERSUASION 73

yes-boxes is∑
i∈[n]

E[si | i reached ∧ i yes-box] =
∑
i∈[n]

Pr[i reached] ·
∑
j∈[mi]

qij ·
x∗ij
2qij
· sij ≥

1

4

∑
i∈[n]

∑
j∈[mi]

x∗ij · sij.

This proves the approximation ratio.

Now consider persuasiveness. Consider the boxes i < n. For each such box
� ri,+E = expected value of R for box i if it is recommended
� ri,−,p

E = expected value of R for box i if some box i′ < i is recommended
� ri,−,s

E = expected value of R for box i if some box i′ > i is recommended
Suppose box i < n has a positive probability of getting recommended, i.e., for which∑

k∈[mi]
x∗ik > 0. Since i is not the SSQ box, it must be a yes-box to get recommended,

and

ri,+E = E[ri | i reached ∧ i yes-box]

=

∑
j∈[mi]

Pr[i reached, contains θij, yes-box] · rij∑
k∈[mi]

Pr[i reached, contains θik, yes-box]

=

∑
j∈[mi]

Pr[i reached] · qij · x∗ij/(2qij) · rij∑
k∈[mi]

Pr[i reached] · qik · x∗ik/(2qik)

=

∑
j∈[mi]

x∗ij · rij∑
k∈[mi]

x∗ik

≥ rmax
E by constraint in LP (5.7) and

∑
k∈[mi]

x∗ik > 0.

Now let piyes = Pr[i reached ∧ i yes-box] the probability that i is recommended. Clearly, if

piyes = 1, then S always recommends box i, and R never sees ri,−,p
E or ri,−,s

E . Otherwise, when
piyes < 1, then using (5.6)

ri,−,p
E = E[ri] ≤ rmax

E ,

since the decision to signal box i′ < i in the for-loop is made without even looking at box i.

Now for i′ > i, we know ri,−,s
E = E[ri | i reached ∧ i not yes-box], since the for-loop passed

through i. Note that

E[ri] = E[ri | i reached] = piyes · r
i,+
E + (1− piyes)r

i,−,s
E

and, using (5.6),

ri,−,s
E =

E[ri]− piyes · r
i,+
E

1− piyes
≤
rmax
E − piyes · r

i,+
E

1− piyes
≤
rmax
E − piyes · rmax

E

1− piyes
= rmax

E .

Finally, for the SSQ box, we have rn,+E = rn,−,p
E = rmax

E by (5.6). Hence, choosing any
recommended box is always weakly better for R than choosing any non-recommended box.

74 CHAPTER 5. RECOMMENDATION

5.2 Delegation

In the previous section, we assumed that S has commitment power. S commits in ad-
vance on her behavior φ∗, before seeing the actual contents of all boxes. Then, since she
is committed, she also sometimes must send signals for boxes that are suboptimal for her.
Overall, however, this form of commitment power usually is very beneficial for S.

There is a long discussion in economics, when and which one of the agents actually have
commitment power in recommendation scenarios. When the sender is a large retailer like
Amazon and the receiver is a single customer, commitment power for the sender seems indeed
reasonable. In other applications, one could also imagine that commitment power is with
the receiver, most notably in scenarios with delegation.

In the Delegation problem, a receiver R does not want to check all possible decision
choices himself. He delegates the search of a good decision to a sender S. Consider, e.g.,
a company R hiring a headhunter S to find a person for a high-profile job. S inspects all
candidates and suggests one to the company R. The company then inspects the candidate
herself and decides to accept or reject it.

While S wants R to accept a candidate that is good for S, R wants S to suggest a candidate
that is good for R. Now here we assume R has commitment power – he commits in advance
to specfic requirements that an acceptable candidate has to fulfill. In this way, he can
motivate S to restrict attention to candidates that are great for R. However, if no candidate
fulfilling these requirements is found, R is also committed to rejecting any other (possibly
still medium-good) candidate, resulting in no utility for him (and S).

More formally, in Delegation we have, similar to persuasion,
� Two agents called sender S and receiver R
� n boxes. Box i contains a prize-pair (sij, rij), where sij ≥ 0 is the prize for S and
rij ≥ 0 the prize for R

� Set Θi of mi possible prize-pair vectors θij = (sij, rij) for box i
� Joint distribution D over Θ = Θ1 × . . .×Θn. D is known to both S and R apriori.

Now, in contrast to persuasion,
� R specifies a decision scheme ψ :

⋃
i Θi → {0, 1}

� Nature draws the vector of prize-pairs in all boxes θ ∼ D
� S sees θ. R does not see θ, knows only D and has committed to ψ
� S picks one box i and presents θij to R
� If ψ(θij) = 1, then R accepts, S and R receive sij and rij, resp.
� Otherwise, R rejects, and they both get nothing
� Goal: Find ψ∗ that yields highest expected prize for R.

Our main insight is an inherent connection to prophet inequalities. We describe it for
Delegation with Independent Boxes, in which Di is independent for each box i ∈ [m].
Algorithm 14 computes an approximate scheme, which not only approximates the optimal
expected value forR achievable in the delegation scenario. It even approximates the expected
optimal value that R would obtain when searching though all boxes herself.

5.2. DELEGATION 75

Algorithm 14: Median-Prophets for Delegation with Independent Boxes

1 Compute r∗ ← E[maxi rij], the expected maximal prize for R
2 Compute the median τ with p0 = Pr[r∗ ≥ τ] ≥ 1/2 and p1 = Pr[r∗ > τ] ≤ 1/2
3 Set R0 = {rij | rij ≥ τ} and R1 = {rij | rij > τ}
4 Compute q such that q · p0 + (1− q) · p1 = 1/2
5 With prob. q set R← R0; else R← R1

6 for all i ∈ [n], j ∈ [mi] do ψ(θij)←

{
1 rij ∈ R
0 otherwise

7 return ψ

Theorem 27. Algorithm 14 computes an decision scheme for Delegation with Inde-
pendent Boxes that gives a 2-approximation of the expected optimal value in any box for
R.

Proof. Algorithm 14 is a variant of Algorithm 4. It accepts any realization that is at least
(in set R0) or strictly more (in set R1 ⊂ R0) than a threshold τ . The threshold τ is not r∗/2
– instead, more in the spirit of Algorithm 5, we pick the “1/2-quantile” or “median” of the
joint distribution for the optimal value r∗.

Facing the scheme ψ computed by Algorithm 14, S chooses a box with highest value sij
among all boxes i with ψ(θij) = 1. Note that the exact same choice would emerge from the
following simulation:

� S looks into all boxes and orders them in non-increasing order of sij
� R opens the boxes online in that order
� R accepts the first one for which ψ(θij) = 1.

The simulation is a Prophet problem: R uses a threshold of at least τ or strictly more than
τ for accepting the prize, as determined by Algorithm 14. S determines the arrival order of
boxes. We will bound the competitive ratio by 2, even if the arrival order is determined
by S based on the realized prizes in the boxes! Hence, R obtains at least half of the
expected optimal value in any box, which proves the theorem.

First, consider r∗. If r∗ ≥ τ , then r∗ = maxi∈[n] rij = τ + maxi∈[n](rij − τ). Otherwise,
r∗ ≤ τ = τ +maxi∈[n] 0. Hence, overall,

r∗ ≤ τ + E[max
i∈[n]

max{rij − τ, 0}] ≤ τ + E

∑
i∈[n]

max{rij − τ, 0}


= τ +

∑
i∈[n]

E[max{rij − τ, 0}]

This upper bound for r∗ has two parts – the threshold τ and a bonus term for each box. In
analysis for the algorithm below, we approximate each part irrespective of the arrival order.

First, suppose there is at least one acceptable realization. Then a reward of at least τ is
obtained irrespective of the arrival order. Turns out this happens with prob. at least 1/2.

76 CHAPTER 5. RECOMMENDATION

For the bonus term of box i, we consider the case that no box j ̸= i has an acceptable
realization. Then the algorithm picks the realization of box i if and only if it is acceptable,
irrespective of the arrival order. Hence, it gets the bonus term. Turns out this happens with
prob. at least 1/2.

More formally, consider ralg, the random prize value obtained by the algorithm.
� Yi indicator random variable for the event that {r1j, . . . , rnj} ∩R = {rij}, i.e., box i is
the only acceptable one. Then ralg = rij.

� All these events are distinct.
� ralg = 0 when all rij ̸∈ R. Otherwise, ralg ≥ τ . We count the bonus above τ only in
case there is exactly one rij ∈ R (i.e., when Yi = 1 for exactly one i).

E[ralg] ≥ Pr[ralg ∈ R] · τ + E

∑
i∈[n]

Yi(rij − τ)


= Pr[ralg ∈ R] · τ +

∑
i∈[n]

E[Yi(rij − τ)]

When r∗ ∈ R, the algorithm also obtains a value in R for any choice of R0 or R1. Hence,
Pr[ralg ∈ R] = Pr[r∗ ∈ R]. We choose R = R0 with probability q and R = R1 otherwise, and
pi = Pr[r∗ ∈ Ri] for i = 0, 1 by definition. This shows

Pr[ralg ∈ R] = Pr[r∗ ∈ R] = q · p0 + (1− q)p1 =
1

2

This implies

E[ralg] ≥ Pr[ralg ∈ R] · τ +
∑
i∈[n]

E[Yi(rij − τ)]

=
1

2
· τ +

∑
i∈[n]

E[Yi(rij − τ)]

=
1

2
· τ +

∑
i∈[n]

Pr[Yi = 1] · E[rij − τ | Yi = 1]

Due to independence among all boxes, we see that E[rij − τ | Yi = 1] = E[rij − τ | rij ∈ R],
since box i is drawn independently. Now we observe for all i ∈ [n]

Pr[Yi = 1] · E[rij − τ | Yi = 1]

= Pr[Yi = 1] · E[rij − τ | rij ∈ R]

= Pr[rij ∈ R] ·
∏
k ̸=i

Pr[rkj ̸∈ R] · E[rij − τ | rij ∈ R]

=
∏
k ̸=i

Pr[rkj ̸∈ R] · E[max{rij − τ, 0}] rij > τ implies rij ∈ R0 ∩R1 ⊆ R

≥
∏
k∈[n]

Pr[rkj ̸∈ R] · E[max{rij − τ, 0}]

5.2. DELEGATION 77

= Pr[r∗ ̸∈ R] · E[max{rij − τ, 0}]

=
1

2
· E[max{rij − τ, 0}] since Pr[r∗ ̸∈ R] = 1− Pr[r∗ ∈ R] = 1

2

Hence,

E[ralg] ≥
1

2
·

τ +∑
i∈[n]

E[max(rij − τ, 0)]

 ≥ 1

2
· r∗.

78 CHAPTER 5. RECOMMENDATION

Chapter 6

Stochastic Multi-Armed Bandits

6.1 Infinite Markov Decision Processes

Recall Section 3.2 and Markov decision processes with finite time horizon. A natural exten-
sion are MDPs with infinite time horizon. These eternal processes have important applica-
tions in machine learning, especially in the area of reinforcement learning.

The setup is similar: Sets S and A of states and actions, upon action a ∈ A in state s ∈ S,
the process yields reward ra(s). It advances to state s′ ∈ S with probability pa(s, s

′). Policy
π considers in each step t the history1 s0, . . . , st−1 and picks an action π(s0, . . . , st−1) ∈ A.
In this way, random sequences of states sπ0 , . . . , s

π
t and actions aπ0 , . . . , a

π
t evolve.

In infinite MDPs we study time-discounted payoffs, where future payoffs are less impor-
tant than present ones. Formally, given a discount factor γ ∈ (0, 1), the reward of policy π
starting in state s0 is

V (π, s0) = E

[
∞∑
t=0

γt · raπt (s
π
t)

]
.

For interpretation, suppose, e.g., that the process terminates in step t independently with
probability γ, and continues to the next step otherwise. Then V (π, s0) represents the ex-
pected payoff from playing the policy π.

Consider an optimal policy π∗. The following can be shown similarly as for finite-time MDPs:
� There is a Markovian π∗, in which π∗(s0, . . . , st−1) = π∗(st−1), i.e., the action depends
only on the current state.

� A Markovian π∗ chooses in each step t an action that maximizes the current reward
plus the (discounted) future rewards from π∗ starting from the next (random) state s′

for the remaining (infinite) time horizon. Hence, the expected reward is

V ∗(s) = V (π∗, s) = max
a∈A

(
ra(s) + γ ·

∑
s′∈S

pa(s, s
′) · V (π∗, s′)

)
, (6.1)

Eq. (6.1) is called Bellman equation and is a classic result in dynamic programming.

1Note that we start the process in round 0 here.

79

80 CHAPTER 6. STOCHASTIC MULTI-ARMED BANDITS

Computing the optimal policy by backwards induction is impossible due to the infinite time
horizon. Instead, we can use linear programming to compute the values vs = V ∗(s):

Minimize
∑
s∈S

vs

subject to vs ≥ ra(s) + γ
∑
s′∈S

pa(s, s
′) · vs′ for all s ∈ S, a ∈ A.

(6.2)

The |A| constraints for vs express the max-operator in (6.1). Increasing values vs′ only leads
to further increase in the right-hand-sides of all constraints for vs. However, the objective
is to minimize the sum of all vs. Thus, in an optimal solution, vs gets raised as little as
possible. As such, there must be a tight constraint for every vs, which indicates an optimal
action for π∗ in s.

For many interesting MDPs, solving LP (6.2) is too time-consuming. Rather, we consider
two simpler iterative processes that lead to an optimal policy, namely value iteration and
policy iteration.

Value Iteration. Value iteration just iterates application of the Bellman equation (6.1).

Start with any vector v(0) = (v
(0)
s)s∈S , and update v

(k+1)
s = t(v(k))s in each step k for all

s ∈ S, using

t(v)s = max
a∈A

(
rs(a) + γ

∑
s′∈S

pa(s, s
′) · vs′

)
.

Clearly, if vs = V ∗(s), then t(v) = v is a fixed point of the iteration. We show that this is
the only fixed point, and the iteration approaches it.

Theorem 28. Value iteration converges to the unique fixed point limk→∞ v
(k)
s = V ∗(s) for

all s ∈ S.

Proof. We first show that t(v) is a contraction. Consider two vectors v = (vs)s∈S and
v′ = (v′s)s∈S . After applying one step of the iteration, the maximum difference in the entries
of any state s ∈ S shrinks by at least a factor γ.

� We define the distance of two vectors v and v′ by

d(v, v′) = max
s∈S
|vs − v′s| = ∥v − v′∥∞

� Consider v. Let a∗ be an action that attains the maximum when computing t(v)s.
Note that a∗ might not be an optimal action in t(v′)s, so

t(vs) = rs(a
∗) + γ

∑
s′∈S

pa∗(s, s
′) · vs′ and

t(v′s) ≥ rs(a
∗) + γ

∑
s′∈S

pa∗(s, s
′) · v′s′ .

6.1. INFINITE MARKOV DECISION PROCESSES 81

� This implies

t(vs)− t(v′s) ≤ γ
∑
s′∈S

pa∗(s, s
′) · (vs′ − v′s′)

≤ γ
∑
s′∈S

pa∗(s, s
′) · d(v, v′) since vs′ − v′s′ ≤ max

s∈S
|vs − v′s| = d(v, v′)

= γ · d(v, v′) since
∑
s′∈S

pa∗(s, s
′) = 1

� The same holds if we reverse the roles of v and v′. Thus, |t(vs) − t(v′s)| ≤ γ · d(v, v′)
for all s ∈ S, and

max
s∈S
|t(v)s − t(v′)s| = d(t(v), t(v′)) ≤ γ · d(v, v′) .

Uniqueness: Suppose there are two different fixed points v∗ and v∗∗ of t(v). Then v∗ = t(v∗)
and v∗∗ = t(v∗∗), so d(v∗, v∗∗) = d(t(v∗), t(v∗∗)) ≤ γ · d(v∗, v∗∗) – a contradiction since γ < 1.
Hence, there is a unique fixed point of t(v).

Convergence: Consider the fixed point v∗ and our iteration v(k). The distance to the fixed
point shrinks every step

d(v(k+1), v∗) = d(t(v(k)), t(v∗) ≤ γ · d(v(k), v∗) ≤ γk+1 · d(v(0), v∗).

The initial distance d(v(0), v∗) is finite and independent of t, so the process must converge.

Policy Iteration. Here we start with any Markovian policy π(0) and iteratively improve
it until it stops changing. We improve a policy π(k) as follows: First compute all values
V (π(k), s) by solving the system of linear equations

V (π(k), s) = rπ(k)(s)(s) + γ ·
∑
s′∈S

pπ(k)(s)(s, s
′) · V (π(k), s′) for all s ∈ S.

Now for each state s ∈ S, compute the action a ∈ A that maximizes the reward ra(s) + γ ·∑
s′∈S pa(s, s

′) · V (π(k), s′) and set π(k+1)(s) = a.

Theorem 29. Policy iteration converges to an optimal policy in a finite number of steps.

Proof. Any fixed-point policy of the iteration with π(k+1) = π(k) fulfills the Bellman equa-
tion (6.1) and thus is optimal. To show that policy iteration converges, note that there are
only |S||A| Markovian policies. Hence, any non-converging policy iteration must cycle. We
will show that no cycle is possible.

A cycle is absent if V (π(k+1), s) ≥ V (π(k), s) for all s ∈ S and all k ≥ 0.
� Fix a step k. Consider an auxiliary sequence of policies π′

0, π
′
1, . . .

� In π′
i we follow π(k+1) for the first i steps and then switch to using π(k).

� Then, in particular, V (π(k), s) = V (π′
0, s) and V (π(k+1), s) = limi→∞ V (π′

i, s).

82 CHAPTER 6. STOCHASTIC MULTI-ARMED BANDITS

� Suppose
V (π′

i, s) ≥ V (π′
i−1, s) for all s ∈ S, i ∈ N (6.3)

then V (π(k+1), s) ≥ V (π(k), s) for all s ∈ S and policy iteration does not cycle.

We show (6.3) by induction, this implies convergence and the theorem.
� Base case:

V (π′
0, s) = rπ(k)(s)(s) + γ ·

∑
s′∈S

pπ(k)(s)(s, s
′) · V (π(k), s′)

V (π′
1, s) = rπ(k+1)(s)(s) + γ ·

∑
s′∈S

pπ(k+1)(s)(s, s
′) · V (π(k), s′)

(6.4)

since π′
0 behaves entirely as π(k), whereas π′

1 makes the first choice with π(k+1) and
then behaves as π(k).

� By definition of policy iteration, π(t+1)(s) is the action that maximizes the right-hand
side(s) of (6.4). Thus, V (π′

1, s) ≥ V (π′
0, s), which proves the base case.

� Induction Step: Observe that

V (π′
i−1, s) = rπ(k+1)(s)(s) + γ ·

∑
s′∈S

pπ(k+1)(s)(s, s
′) · V (π′

i−2, s
′)

V (π′
i, s) = rπ(k+1)(s)(s) + γ ·

∑
s′∈S

pπ(k+1)(s)(s, s
′) · V (π′

i−1, s
′) .

The hypothesis V (π′
i−1, s) ≥ V (π′

i−2, s) now directly implies V (π′
i, s) ≥ V (π′

i−1, s), since
the right-hand sides of the lower equation are pointwise larger for all s′ ∈ S.

6.2 Markovian Multi-Armed Bandits

Multi-armed bandit problems play a central role in machine learning, especially in the area of
online learning. We start with a variant that represents an MDP with infinite time horizon.
The problem has a huge state space, so the techniques from the previous section are not
efficiently applicable.

Consider the Markovian Single-Armed Bandit problem:
� MDP with two actions A = {play, pause}.
� play: Probability distributions and rewards are arbitrary.
� pause: Always “pause” at the current state, i.e., ppause(s, s) = 1 and rpause(s) = 0.

Example 8. You are a gambler in a stylized lottery. Every week you can decide to play
or to skip the round. If you play, you must invest 1 unit of money, and you win with 1%
probability. Once you have won, you can obtain a payment of 5 units of money every week,
until the lottery terminates. Every week the lottery terminates with a probability 1− γ.
The states are S = {s, t}, where t means you have won. For s, we have pplay(s, s) = 0.99,
pplay(s, t) = 0.01, and reward rplay(s) = −1. For t we have pplay(t, t) = 1 and rplay(t) = 5.
We derive an optimal Markovian policy π∗.

6.2. MARKOVIAN MULTI-ARMED BANDITS 83

[Pic: States, Rewards, Transitions]

In state t, the discounted reward from playing is rt =
∑∞

i=0 γ
i · 1 · 5 = 5

1−γ
> 0. Hence,

π∗(t) = play always. In state s, pause is the best action if and only if the discounted reward
for play is rs ≤ 0. Note

rs = −1 + γ · (0.99 · rs + 0.01 · rt) = −1 + γ ·
(
0.99 · rs +

0.05

1− γ

)
,

which implies

rs(1− 0.99γ) =
0.05γ

1− γ
− 1.

Since 1 − 0.99γ > 0, we have rs ≤ 0 if and only if 0.05γ
1−γ
≤ 1. Hence, π∗(s) = pause when

0.05γ ≤ 1 − γ, i.e., γ ≤ 1/1.05 ≈ 0.9523. Otherwise, π∗(s) = play. Notably, the expected

duration of the lottery in that case is
∑∞

i=0 γ
i(1− γ) · i = γ

1−γ
> 1/1.05

1−1/1.05
= 20 weeks. ■

Now consider the Markovian Multi-Armed Bandit problem

� Parallel composition of single-armed bandits.
� States S = S1 × · · · × Sn are vectors of states for the n single-armed bandits.
� Actions A = {play1, . . . , playn, pause}; action playi means play on the i-th single-
armed bandit and pause on all others. pause pauses all arms.

� Arms operate independently, but we can advance only one arm at a time.

If a Markovian policy decides to pause, it remains in that state and therefore keeps pausing
eternally. For γ = 1 it would be irrelevant in which order we play the arms. Since γ < 1, we
want high rewards on the chosen arms as early as possible, and the order is important!

Example 9. It seems intuitive to greedily pick an arm with highest upcoming reward.
However, this is not optimal. Consider two arms with S1 = {s1, s2, s3} and S2 = {t1, t2}.
Initially the arms are in states s1 and t2.

For arm 1, we have no initial reward: rplay(s1) = 0 and pplay(s1, s2) = 1/2, pplay(s1, s3) =
1/2. If we move to state s2, there is a big reward: rplay(s2) = 1000 and pplay(s2, s3) = 1. In
state s3, there is no reward: rplay(s3) = 0 and pplay(s3) = 0.

For arm 2, we have a bigger initial reward: rplay(t1) = 10 and pplay(t1, t2) = 1, but then
no later reward: rplay(t2) = 0 and pplay(t2, t2) = 1.

[Pic: States, Rewards, Transitions]

If we first play arm 1, this gives no immediate reward, but with 50% probability enables us
to reap a reward of 1000 in the next step. Clearly, one would want to exploit this option as
early as possible. Instead, arm 2 gives reward of 10 the first time it is played. For large γ,
this should be done only after the expected reward of 500 in arm 1 is secured. ■

Towards an optimal policy, we consider a separate, auxiliary single-armed bandit problem
for each arm i ∈ [n]. In this auxiliary problem,. . .

� Every time you play, you have to pay λ.

84 CHAPTER 6. STOCHASTIC MULTI-ARMED BANDITS

� The maximum reward for an optimal policy in the auxiliary problem for arm i is

Vi(s, λ) = max

{
0, rplay,i(s)− λ+ γ ·

∑
s′∈S

pplay,i(s, s
′) · Vi(s′, λ)

}

� For increasing λ, the value Vi(s, λ) continuously decreases.
⇒ There is a largest value δ(s) such that Vi(s, δ(s)) = 0 and play is as good as pause in

the auxiliary problem for arm i. Formally

δi(s) = sup{λ | Vi(s, λ) > 0} = inf{λ | Vi(s, λ) = 0}

� δi(s) is called the fair charge or Gittins index of arm i in state s.

Example 10. Consider a single arm with states {A,B,C,D}, initially in state A. The
transitions are deterministic A → B → C → D → D → D → The rewards are
rplay(A) = 1, rplay(B) = 12, rplay(C) = 1, and rplay(D) = 0. Assume γ = 2/3.

The fair charge of arm D is 0. For arm C, the fair charge is 1 – then it is optimal to
play in C and pause in D. For B the fair charge is 12 – then it is optimal to play in B and
pause in C and D.

Finally, suppose it is optimal to play in A. Then suppose we play in B and pause in C
and D. In this case, we obtain a reward of

1− λ+
2

3
· (12− λ) = 9− 5

3
· λ

and the fair charge fulfills 9 = 5
3
λ, i.e., λ = 27/5 = 5.4 > 1. Now with this value of λ, it is

indeed optimal to play in B and pause in C and D. ■

Consider the Gittins-Index policy πG: If there is an arm with a positive Gittins index,
choose playi for an arm i with the highest Gittins index. Otherwise, play pause.

The main result of this section is the following theorem.

Theorem 30. πG is an optimal policy for Markovian Multi-Armed Bandit.

We first prove the theorem for theMarkovian Single-Armed Bandit problem. Consider
the auxiliary problem with charge λ. An optimal policy for the auxiliary problem can be
derived from the fair charges δ(s): Pick play if δ(s) > λ and pause if δ(s) < λ. For
δ(s) = λ, both are optimal. Now based on this, let us consider the Markovian Single-
Armed Bandit problem without charges.

Lemma 19. Consider a policy for a single arm that first only chooses play and then only
chooses pause. Let τ be the step in which it chooses pause for the first time. Then

E

[
τ−1∑
t=0

γt · rplay(st)

]
≤ E

[
τ−1∑
t=0

γt ·min
t′≤t

δ(st′)

]
(6.5)

with equality if δ(sτ) = mint′≤τ δ(st′) with probability 1.

6.2. MARKOVIAN MULTI-ARMED BANDITS 85

Proof. First consider the case when δ(sτ) = mint′≤τ δ(st′) with probability 1.
� Policy stops to play in some state that has smallest fair charge seen so far.
� An execution decomposes into phases of random length.
� Let τ0 = 0 and τk+1 the first step t ≥ τk where δ(st) < δ(sτk).
� The policy will pause at one of the time points τk.

[Pic: Fair charges over time, phases, time steps τk, stopping time]

An alternative interpretation:
� Fix everything until time τk.
� At time τk, start an optimal policy for the arm with charge λ = δ(τk).
� Policy stops at time t = τk+1, the first step in which the charge δ(st) < λ = δ(τk).
� Consider expected reward of optimal policy in the auxiliary problem with charge
λ = δ(τk) starting from τk. By definition of fair charge, the expected reward is 0. Also,
the optimal policy plays in the time interval {τk, . . . , τk+1 − 1}, so

E

[
τk+1−1∑
t=τk

γt−τk · (rplay(st)− δ(sτk))

∣∣∣∣∣ τk
]
= 0

� This implies for the (non-auxiliary) original problem

E

[
τk+1−1∑
t=τk

γt−τkrplay(st)

∣∣∣∣∣ τk
]
= E

[
τk+1−1∑
t=τk

γt−τkδ(sτk)

∣∣∣∣∣ τk
]

= E

[
τk+1−1∑
t=τk

γt−τk min
t′≤t

δ(st′)

∣∣∣∣∣ τk
]
.

� The statement for δ(sτ) = mint′≤τ δ(st′) follows by summing over all k.

Now consider a general policy. We only stop early in one of the phases (say, phase j). When
we stop, the fair charge of the current state is larger than the charge of the phase λ = δ(sτj).
The reward in the auxiliary problem for phase j can be at most 0. This proves the inequality
for general policies.

Lemma 20. Consider an arbitrary policy π for Markovian Single-Armed Bandit. We
denote by T the set2 of time steps where π picks play. Then

E

[∑
t∈T

γtrplay(st)

]
≤ E

[∑
t∈T

γt min
t′≤t

δ(st′)

]

with equality if δ(st) = mint′≤t δ(st′) for all t ̸∈ T with probability 1.

Proof. Note that the previous lemma proves the result when T = {0, 1, . . . , τ − 1}.
� We can apply the argument to the case T = {t′, . . . , t′ + τ − 1} for some t′.
� Then δ(s0) = . . . = δ(st′), so both sides of (6.5) simply get multiplied by γt

′
.

2Note that T is usually a random set depending on realized states during the execution of π.

86 CHAPTER 6. STOCHASTIC MULTI-ARMED BANDITS

� Generally, T is a union of disjoint time intervals, each one has the form {t′, . . . , t′+τ−1}.
� Apply the above argument to each interval, add up the resulting inequalities.
� Linearity of expectation implies the result.

Proof of Theorem 30. Let Ti = {t | πG(st) = playi}, i.e., the set of steps where πG plays
arm i. We observe how the Gittins index δi(st) of arm i changes over time.

� If t ̸∈ Ti, then δi(st+1) = δi(st). Otherwise, δi(st+1) can differ from δi(st).
� Suppose we play arm i. We continue until δi falls below the value it had when we
started playing arm i and also stops being the one with maximum index among all
other arms.

� Thus, when we stop playing arm i, then δi is at an all-time low.
� This implies: If t ̸∈ Ti then δi(st) ≤ mint′≤t δi(st′).
� This property allows to apply Lemma 20. The expected reward from arm i is, thus,

E

[∑
t∈Ti

γt min
t′≤t

δi(st′)

]

� Overall, the expected reward3 from πG is

R(πG) =
∑
i∈[n]

E

[∑
t∈Ti

γt min
t′≤t

δi(st′)

]
= E

∑
i∈[n]

∑
t∈Ti

γt min
t′≤t

δi(st′)


For any other policy π′, we can make similar observations. However, by Lemma 20 the
expected reward of any policy π′ is only upper bounded by R(π′).

The final step of the proof is to show that R(π) is maximized for π = πG.
� Consider πG and any policy π.
� Assumption: Policies play every arm infinitely often, i.e., all |Ti| =∞ in both policies.
� Proof for finite sets Ti also works, but much more messy!
� xt = mint′≤t δi(st) for the arm with t ∈ Ti in πG
� yt = mint′≤t δi(st) for the arm with t ∈ Ti in π
� Arm i transitions randomly to another state in Si if it is played.
� Fix coin flips and resulting transitions arbitrarily. We denote the transitions by ζ.
� Given ζ, now x0, x1, . . . and y0, y1, . . . are fixed.
� Each arm played infinitely often: The arms go through the same state transitions ζ.
Only the order of arms in the sequences varies.

� Sequences x and y contain the same numbers. For πG we have x0 ≥ x1 ≥ x2 ≥ . . .,
i.e., the sequence is non-increasing. This implies

R(π, ζ) =
∞∑
t=0

γtyt ≤
∞∑
t=0

γtxt = R(πG, ζ) .

� Holds for any choice ζ of the random transitions of all the arms⇒ holds in expectation.

3R(πG) depends on the division of time steps into sets Ti, which results from the action choices of πG.

6.3. STOCHASTIC MULTI-ARMED BANDITS 87

6.3 Stochastic Multi-Armed Bandits

In previous sections, we studied MDPs with explicit stochastic information about the be-
havior of the process. In this section, we move away from this assumption. We consider a
stateless multi-armed bandit problem, where the reward of each arm is drawn independently
from some distribution. The main challenge is that we don’t know these distributions in
advance. The goal is to quickly learn which arm is the best one.

In the Stochastic Multi-Armed Bandit problem
� There are n arms and T rounds. Each arm i has a distribution Di.
� We assume T ≥ n, and each Di maps to the unit interval [0, 1].
� In each round t = 1, . . . , T :
� Nature draws a reward Rit ∈ [0, 1] for each arm i independently from Di.
� Distributions and all draws remain unknown. We choose an arm it ∈ [n].
� We see and obtain reward Rt = Rit,t, but do not see rewards of arms j ̸= it in round t.

Let µi be the (initially unknown) expected reward of arm i ∈ [n].
� If we knew the distributions, we would always pull the best arm i∗ = argmaxi µi.
� Instead, we must first learn about Di and µi’s by observing the random draws.

� We only get expected reward E
[∑T

t=1Rt

]
≤ T · µi∗ .

� Goal: Maximize expected reward, or put differently, mininize the expected regret:

Regret(T) = T · µi∗ −
T∑
t=1

E[Rt]

Explore-and-Exploit A simple algorithm: First exploration, then exploitation!
� In round (i− 1) · k + 1, . . . , i · k: Sample arm i for k rounds, for each i ∈ [n]
� Let µ̂i be the average reward of arm i during this exploration phase.
� In rounds kn+ 1, . . . , T play arm with largest µ̂i.

Choosing a suitable value for k, we obtain a reasonably good estimate for each µi, without
sacrificing too many rounds with potentially large regret during exploration. The resulting
regret is sublinear in T when T grows large.

Theorem 31. For k = (T/n)2/3 the regret of the simple algorithm is at most O(n1/3T 2/3 ln(nT)).

The proof uses a Hoeffding inequality – a concentration result similar to the Chernoff
bound, for bounded independent variables (not necessarily Bernoulli ones). Intuitively, when
we have many bounded variables, their average is close to expectation with a very large
probability.

Theorem 32. Let X1, . . . Xn be independent random variables with ai ≤ Xi ≤ bi and X̄ =
1
N

∑n
i=1Xi be the average. Then the following Hoeffing inequality holds:

Pr[|X̄ − E[X̄]| ≥ δ] ≤ 2e
− 2n2δ2∑

i bi−ai for all δ ≥ 0

The proof of Theorem 31 is a combination of Hoeffing and union bounds:

88 CHAPTER 6. STOCHASTIC MULTI-ARMED BANDITS

Algorithm 15: UCB1-Algorithm for Stochastic Multi-Armed Bandit

1 for round t = 1, . . . , n do pull arm t, set St ← Rtt and P
(n)
t ← 1

2 for round t = n+ 1, . . . , n do

3 Set µ̂
(t)
i ← Si/P

(t)
i and cb

(t)
i ← µ̂

(t)
i +

√
lnT
Pi

for all i ∈ [n]

4 Pull arm it = argmaxi cb
(t)
i

5 Update Sit ← Sit +Rit,t

6 Update P
(t+1)
it

← P
(t)
it

+ 1, and P
(t+1)
i ← P

(t)
i for i ̸= it

� Hoeffding: For each arm i after exploration, probability that |µ̂i − µi| ≥ δ is exponen-
tially small

� Union: Probability that |µ̂i − µi| ≥ δ for all arms is (n times) exponentially small
� Hence, with large probability an arm with best µ̂i has µi ≥ µi∗ − 2δ. Then regret is
at most kn · 1 in the exploration phase and at most (T − kn) · 2δ in the exploitation
phase. Otherwise, with small probability regret is at most T .

� Finally, optimize k and δ: If k = (T/n)2/3 and

δ =

√
n2/3

2 · T 2/3
ln

2 · n2/3

T 1/3

the resulting calculation of the expected regret yields the bound in the theorem.

The details are left as an exercise.

UCB Algorithm The previous approach is not sensitive enough to the evolution of re-
wards – if an arm is very bad, it could be disregarded much earlier. Algorithm 15 is the
UCB1 (upper confidence bound, version 1) algorithm. In every round t, it uses previous

observations to compute an empirical average µ̂
(t)
i , for each arm i ∈ [n]. The more often

we pull an arm, the closer this is to µi. Based on µ̂
(t)
i and P t

i (number of times arm i was

pulled before round t), we compute cb
(t)
i – an estimation on µi via a confidence interval of√

(lnT)/Pi around µ̂
(t)
i . UCB always chooses an arm with highest confidence bound.

Theorem 33. The expected regret of the UCB1 algorithm is at most
∑

i ̸=i∗
4 lnT
∆i

+4∆i, where
∆i = µi∗ − µi

Note that ∆i is usually a constant independent of T . Thus, asymptotically for large T the
regret becomes as small as O(log T). We are also interested in the behavior of the regret in
n, which is only linear as long as ∆i are constants independent of n.

The main step of the proof is the following lemma.

Lemma 21. For every arm i ∈ [n], we denote by Pi = P
(T+1)
i the number of times that arm

i is pulled overall. It holds that E[Pi] ≤ si + 4, where si =
4 lnT
∆2

i
.

We prove the lemma below. First, let us observe how it can be used to prove the theorem.

6.3. STOCHASTIC MULTI-ARMED BANDITS 89

Proof of Theorem 33. We define the following random variables for each round t.
� Xit = 1 if UCB1 picks arm i in round t, 0 otherwise.
� Recall Rit is reward drawn in round t for arm i (before the decision of the algorithm)
� Xit and Rit are independent – choice without seeing rewards in round t.
� Hence E[XitRit] = E[Xit]E[Rit] = E[Xit]µi

Since E[Rt] = E[
∑n

i=1XitRit], we have by linearity of expectation

E

[
T∑
t=1

Rt

]
= E

[
T∑
t=1

n∑
i=1

XitRit

]
=

n∑
i=1

T∑
t=1

E [Xit]µi =
n∑

i=1

E

[
T∑
t=1

Xit

]
µi =

n∑
i=1

E[Pi]µi.

Note that
∑

i Pi = T always, so the regret

Tµi∗ − E

[
T∑
t=1

Rt

]
=

n∑
i=1

E[Pi](µi∗ − µi) =
n∑

i=1

E[Pi]∆i,

and the theorem follows by applying the upper bound on E[Pi] from Lemma 21.

It remains to prove Lemma 21. Notably, it concerns only a single arm i and says that the
larger ∆i the earlier UCB1 stops pulling that arm. The main argument is encapsulated in
the following lemma. It relates the precision of the estimation in µ̂

(t)
i to P

(t)
i , i.e., the number

of times an arm has been chosen.

Lemma 22. For every i ∈ [n] we have

Pr

[
∃t : |µ̂i(t)− µi| ≥

√
lnT

P
(t)
i

]
≤ 2

T
.

Proof. We cannot apply the Hoeffding inequality directly to µ̂
(t)
i for a fixed t, since both µ̂

(t)
i

and the root-term depend on the random number P
(t)
i of times we pulled arm i so far. Let

us instead consider the event that we pull arm i for the k-th time.
� The decision to pull arm i in round t depends only on previous draws of this and other
arms. Reward Rit, however, is independent of all previous draws.

� Let tk be the (random) round, in which we pull arm i for the k-th time.

⇒ µ
(tk+1)
i =

∑k
j=1Ri,tj/k, a sum of independent random variables divided by P

(tk+1)
i = k.

� Now observe that ∃t : |µ̂(t)
i − µi| ≥

√
lnT

P
(t)
i

⇐⇒ ∃k : |µ̂(tk+1)
i − µi| ≥

√
lnT
k
.

� For a fixed k and the rewards Ri,t1 , . . . , Ri,tk we can apply Hoeffdings inequality:

Pr

[∣∣∣∣∣1k
k∑

j=1

Ri,tj − µi

∣∣∣∣∣ ≥
√

lnT

k

]
≤ 2e−

2k2(lnT)/k
k =

2

T 2
.

� This defined at most T events, one for each k. A union bound implies

Pr

[
∃k :

∣∣∣∣∣1k
k∑

j=1

Ri,tj − µi

∣∣∣∣∣ ≥
√

lnT

k

]
≤

T∑
t=1

2

T 2
=

2

T
.

90 CHAPTER 6. STOCHASTIC MULTI-ARMED BANDITS

The lemma shows that cb
(t)
i is close to µi with large probability – it’s unlikely that cb

(t)
i is

much larger or smaller than µi.

Corollary 2. For every i ∈ [n] we have

Pr
[
∃t : cb(t)i ≤ µi

]
≤ 2

T
and Pr

[
∃t : cb(t)i ≥ µi + 2

√
lnT

P
(t)
i

]
≤ 2

T
.

Using this insight, we prove Lemma 21, by which we complete the proof of Theorem 33.

Proof of Lemma 21. We first analyze the case when Pi > si, i.e., arm i is pulled often.

� Pi > si ⇒ there is round t′ with P
(t′)
i = si and i chosen again.

� i chosen because cb
(t′)
i is maximal, so cb

(t′)
i ≥ cb

(t′)
i∗ .

� We apply Corollary 2 to i∗ and i:

Pr
[
∃t : cb(t)i∗ ≤ µi∗

]
≤ 2

T
and Pr

[
∃t : cb(t)i ≥ µi + 2

√
lnT

P
(t)
i

]
≤ 2

T
. (6.6)

� Union bound: Probability at least one of the two happens is at most 4/T .
� Thus, neither one happens with probability at least 1− 4/T . Then for all rounds t, we

have cb
(t)
i∗ > µi∗ and cb

(t)
i < µi + 2

√
lnT

P
(t)
i

. Hence, for round t′ with P
(t′)
i = si

cb
(t′)
i∗ > µi∗ and cb

(t′)
i < µi + 2

√
lnT

si
= µi +∆i = µi∗ ,

which implies a contradiction to cb
(t′)
i ≥ cb

(t′)
i∗ .

⇒ If Pi > si, at least one of the events in (6.6) must occur, and so Pr[Pi > si] ≤ 4/T .

Finally, observe the following upper bound

E[Pi] ≤ Pr[Pi ≤ si] · si + Pr[Pi > si] · T
≤ si + Pr[Pi > si] · T
≤ si + 4.

Chapter 7

Adversarial No-Regret Learning

7.1 Majority Algorithms and the Experts Problem

In the previous chapter, we have considered stochastic versions of the multi-armed bandit
problem. Here we advance to a non-stochastic model, in which rewards for each arm are
determined by an unknown entity. In the worst case, there might even be an adversary that
fixes the rewards in a way to make our policy achieve as little reward as possible.

We start with an ExpertClassification problem, in which

� T items (say, pictures) arrive sequentially over time
� n classifiers inspect all pictures and issue their evaluation
� Each round t, each classifier tells us whether she believes the picture contains a cat
(x

(t)
i = 1) or not (x

(t)
i = 0)

� Based on these numbers, we also decide y(t) ∈ {0, 1}. Then we get feedback if the
picture really contains a cat, i.e., we see if we and which of classifiers made a mistake.

� Goal: Small number of mistakes, comparable to the best classifier in hindsight

Since the classifiers might not be perfect, they make mistakes every once in a while. We only
have access to their evaluations, so our goal is to be as good as the best one in hindsight.

Our approach is a simple Weighted Majority algorithm (Algorithm 16). It assigns each

classifier i a weight w
(t)
i ∈ (0, 1]. Starting with w

(1)
i = 1, the weight is decreased by a factor

(1 − η) every time the classifier makes a mistake. The parameter 0 < η ≤ 1/2 is called
a learning rate. The majority algorithm simply follows a weighted majority vote – if the
weighted average prefers 1 (i.e., W

(t)
H ≥ W

(t)
L), then y(t) = 1, and 0 otherwise.

Intuitively, over time we have highest weight on the classifiers that made the least number
of mistakes. Hence, their vote has a larger impact than the one of classifiers that have been
wrong a lot in the past. The role of η is to steer this adaptation – the larger η, the more
aggressively we punish single-round mistakes and follow classifiers that have been correct
recently. For small η, we target the longer time horizon, making more gentle adjustments,
but thereby also listening to the evaluation of bad classifiers for a longer time.

Theorem 34. Let M
(T)
i be the total number of mistakes of classifier i in T rounds. Weighted

91

92 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

Algorithm 16: Weighted Majority for ExpertClassification

1 Set w1
i = 1 for all i ∈ [n]

2 for round t = 1, . . . , T do

3 Observe numbers x
(t)
i for all i ∈ [n]

4 Set W (t) =
∑

i∈[n]w
(t)
i and W

(t)
H =

∑
i:x

(t)
i =1

w
(t)
i

5 if W
(t)
H ≥ W (t) −W (t)

H then set y(t) = 1 else y(t) = 0

6 Observe f (t) ∈ {0, 1} and record mistakes m
(t)
i = |x(t)i − f (t)| for all i ∈ [n]

7 Update w
(t+1)
i = w

(t)
i · (1− η)m

(t)
i for all i ∈ [n].

Majority makes a number of mistakes of at most

(2 + 2η)min
i
MT

i +
2 lnn

η
.

Proof. We use the sum of weights W (t) to relate our mistakes to the ones of the best expert.
First consider our mistakes.

� Consider a round t where we make a mistake.
� Let U ⊆ [n] be the set of classifiers that are wrong in round t.

� By our choice,
∑

i∈U w
(t)
i ≥

∑
i ̸∈U w

(t)
i , or equivalently

∑
i∈U w

(t)
i ≥ W (t)/2

� All i ∈ U also made a mistake: w
(t+1)
i = w

(t)
i (1− η) for i ∈ U , and w(t+1)

i = w
(t)
i else.

� This implies for the total weight in the next round

W (t+1) =
∑
i∈U

(1− η) · w(t)
i +

∑
i ̸∈U

w
(t)
i = W (t) − η ·

∑
i ̸∈U

w
(t)
i ≤

(
1− η

2

)
·W (t) .

� If we make M mistakes in total, then W (T+1) ≤ (1− η/2)M ·W (1) = (1− η/2)Mn.

Now consider the number of mistakes of the best expert.
� Let M

(T)
i∗ =

∑
tm

(t)
i∗ be the total number of mistakes of the best expert i∗.

� Then w
(t+1)
i∗ = w

(t)
i∗ · (1− η) whenever m

(t)
i∗ = 1.

� Hence w
(T+1)
i∗ = (1− η)M

(T)
i∗ · w(1)

i∗ = (1− η)M
(T)
i∗

� Relating this to W (T+1) and combining it with the above observation, we see

(1− η)M
(T)
i∗ ≤ W (T+1) ≤

(
1− η

2

)M
n.

The inequality relates our mistakes M and the mistakes of the best expert M
(T)
i∗ . To extract

a more direct upper bound on M , we take a logarithm on both sides

M
(T)
i∗ ln(1− η) ≤M ln

(
1− η

2

)
+ lnn.

Using the following bounds on the logarithm

− z2 − z ≤ ln(1− z) ≤ −z for all z ∈ [0, 0.5], (7.1)

7.1. MAJORITY ALGORITHMS AND THE EXPERTS PROBLEM 93

Algorithm 17: Randomized Weighted Majority (RWM) for Experts

1 Set w1
i = 1 for all i ∈ [n]

2 for round t = 1, . . . , T do

3 Set W (t) =
∑

i∈[n]w
(t)
i

4 Choose expert i with probability p
(t)
i = w

(t)
i /W

t

5 Observe costs ℓ
(t)
i for all i ∈ [n]

6 Update w
(t+1)
i = w

(t)
i · (1− η)ℓ

(t)
i for all i ∈ [n].

we obtain
M

(T)
i∗ (−η2 − η) ≤M(−η/2) + lnn

or, equivalently,
M ≤ (2 + 2η)M

(T)
i∗ + (2 lnn)/η .

[Pic: Sandwich-Bounds for ln(1− z) with z ∈ [0, 0.5]]

Hence, we can expect to make at most ca. twice as many mistakes as the best classifier.
Using randomization, we can decrease this factor to 1, i.e., we make a number of mistakes
that approaches the one of the best classifier.

Instead of a majority vote, the algorithm now adopts the decision of a single expert. It
picks any expert with a probability proportional to the weight p

(t)
i = w

(t)
i /W

(t). As such,
successful experts are preferred over bad ones. The RWM algorithm (Algorithm 17) can be
used even in a more general setting, the Experts problem:

� There are n experts and T rounds
� Each round t we pick one expert and follow her advice
� After deciding for an expert, nature reveals a cost ℓ

(t)
i ∈ [0, 1] for each expert.

� We experience the cost of the expert which we chose to follow
� Goal: Obtain total cost comparable to the best expert in hindsight

In this Experts problem, we recover ExpertClassification by setting ℓ
(t)
i = 1 whenever

the classifier makes a mistake and 0 otherwise.

For the following result, let L
(T)
i =

∑T
t=1 ℓ

(t)
i denote the total cost of expert i in hindsight,

and L
(T)
RWM denote the expected total cost of RWM.

Theorem 35. For any sequence of cost vectors from [0, 1], the RWM algorithm obtains

L
(T)
RWM ≤ (1 + η)min

i
L
(T)
i +

lnn

η
.

Before we proceed to the proof, let us formally express the strength of this result. We say

Regret(T) = L
(T)
A −min

i
L
(T)
i

94 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

is the (external) regret of algorithm A on a sequence of T cost vectors. Algorithm A is
called a no-(external)-regret algorithm if Regret(T) = o(T). In such an algorithm, the
average regret over time Regret(T)/T → 0 as T grows to infinity. Hence, as time grows, the
algorithm achieves the same average cost as the best expert in hindsight.

Observe that setting η =
√

lnn
T

yields

L
(T)
RWM ≤ min

i
L
(T)
i + 2

√
T lnn .

Corollary 3. Using η =
√

lnn
T
, RWM has external regret at most 2

√
T lnn and is a no-

external-regret algorithm.

Proof of Theorem 35. We again concentrate on the sum of weights over time. First, consider
the total cost of the algorithm.

� Note that

W (t+1) =
n∑

i=1

w
(t+1)
i =

n∑
i=1

w
(t)
i (1− η)ℓ

(t)
i .

� Observe that (1− η)z = (1− zη), for both z = 0 and z = 1.
� Furthermore, z → (1− η)z is a convex function for z ∈ [0, 1], and this implies

(1− η)ℓ ≤ (1− ℓη).

[Pic: Convex]
� This gives

W (t+1) ≤
n∑

i=1

w
(t)
i (1− ℓ(t)i η) = W (t) − η ·

n∑
i=1

w
(t)
i ℓ

(t)
i

� Let ℓ
(t)
RWM =

∑n
i=1 ℓ

(t)
i w

(t)
i /W

(t), the expected loss of RWM in step t. Substituting this
into the bound for W (t+1) gives

W (t+1) ≤ W (t) − ηℓ(t)RWMW
(t) = W (t)(1− ηℓ(t)RWM) ,

and, as a consequence,

W (T+1) ≤ W (1) ·
T∏
t=1

(1− ηℓ(t)RWM) = n ·
T∏
t=1

(1− ηℓ(t)RWM) .

As such, W (T+1) is upper bounded in terms of the expected loss of RWM. Let us now turn
our attention to the best expert in hindsight.

� For each expert i, the final weight

w
(T+1)
i = w

(1)
i ·

T∏
t=1

(1− η)ℓ
(t)
i = (1− η)L

(T)
i .

7.2. MULTI-ARMED BANDITS 95

� This yields

W (T+1) ≥ max
i∈[n]

w
(T+1)
i = (1− η)mini L

(T)
i .

As such, W (T+1) is lower bounded in terms of the cost of the best expert. Combining the
bounds for W (T+1) and taking the logarithm on both sides gives us

min
i
L
(T)
i · ln(1− η) ≤ (lnn) +

T∑
t=1

ln(1− ηℓ(t)RWM) .

Applying (7.1), we obtain

min
i
L
(T)
i · (−η − η2) ≤ (lnn) +

T∑
t=1

(−ηℓ(t)RWM) = (lnn)− ηL(T)
RWM .

Finally, solving for L
(T)
RWM gives

L
(T)
RWM ≤ (1 + η)min

i
L
(T)
i +

lnn

η
.

7.2 Multi-Armed Bandits

In the Experts problem, we assume that in every round t, we learn the complete cost vector
ℓ(t) for all n possible choices (i.e., “experts”). In many applications this is not reasonable –
in fact, for most decisions in life we only learn about the outcome after making a choice, and
usually we do not learn (entirely) what would have happened if we had decided differently.

The Adversarial Multi-Armed Bandit problem is the Experts problem with such
limited feedback:

� n experts, T rounds, costs ℓ
(t)
i ∈ [0, 1] exactly as in the Experts problem

� Let It be the expert chosen by the algorithm in round t.
� It is possibly a random variable, depends on choices and observed costs in rounds t′ < t
� In round t, algorithm only learns ℓ

(t)
It
, but none of ℓ

(t)
i for i ̸= It.

� Goal: Minimize regret of the algorithm

Algoithmically, the Adversarial Multi-Armed Bandit problem requires substantially
more exploration. Algorithm 18 is the Exp3 algorithm (Explore and Exploit with Exponential
weights). It uses a variant of the multiplicative weights update from the RWM algorithm
with additional exploration and adjusted costs for limited feedback:

� Selection probabilities q
(t)
i can be interpreted as follows: With prob. (1−γ) we exploit

based on previous performance and weights, with prob. γ we explore uniformly at
random.

96 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

Algorithm 18: Exp3 Algorithm for Adversarial Multi-Armed Bandit

1 Set w1
i = 1 for all i ∈ [n]

2 for round t = 1, . . . , T do

3 Set W (t) =
∑

i∈[n]w
(t)
i and p

(t)
i = w

(t)
i /W

t

4 Set probabilities q
(t)
i = (1− γ) · p(t)i + γ · 1/n

5 Draw It according to q(t), observe cost ℓ
(t)
It

6 Set normalized cost ℓ̃
(t)
i = ℓ

(t)
It
/q

(t)
It

and ℓ̃
(t)
i = 0 for all i ̸= It

7 Update w
(t+1)
i = w

(t)
i · e−η·ℓ̃(t)i for all i ∈ [n].

� Normalized cost ℓ̃ is a “fake-cost” only used for weight update. Designed to address
the missing feedback, it can be as large as ℓ̃

(t)
i = ℓ

(t)
i /q

(t)
i ≤ 1/(γ/n) = n/γ, which

might be larger than 1. At first, this might seem excessive. However, ℓ
(t)
i ̸= 0 only if

expert i is chosen and ℓ
(t)
i > 0. Hence, most of the time, there is no cost for expert i,

and hence no update to w
(t)
i at all.

� The update uses e−η·ℓ̃(t)i instead of (1 − γ)ℓ̃
(t)
i . Both terms are 1 for ℓ̃

(t)
i = 0 and

monotonically go to 0 as ℓ̃
(t)
i goes to infinity. For small γ, they are extremely similar

(try plotting them). The first one will be easier for us in the analysis.
� We discuss the exact choices for γ and η later. However, eventually we will have
η ≤ γ/n, so in all exponents of the update step η · ℓ̃(t)i ∈ [0, 1].

The main result of this section is the following theorem.

Theorem 36. If η ≤ γ/n, the Exp3-algorithm has an expected cost of at most

L
(T)
Exp3 ≤ min

i
L
(T)
i +

lnn

η
+ nT · (η + γ/n) .

This bound implies the following direct corollary.

Corollary 4. Using η =
√

lnn
nT

and γ = ηn, Exp3 has external regret at most 3
√
nT lnn and

is a no-external-regret algorithm.

Before proving the theorem, we first establish a technical lemma with a bound on the overall
normalized cost multiplied with the p

(t)
i stemming from the multiplicative-weights update.

Lemma 23. Suppose all cost vectors of all rounds ℓ̃(1), . . . , ℓ̃(T) satisfy 0 ≤ ℓ̃
(t)
i ≤ 1/η for all

i ∈ [n] and 1 ≤ t ≤ T , and let L̃
(T)
i =

∑T
t=1 ℓ̃

(t)
i . Then the vectors p(1), . . . , p(T) computed by

the multiplicative-weights update satisfy

T∑
t=1

n∑
i=1

p
(t)
i ℓ̃

(t)
i − η

T∑
t=1

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2 ≤ min

i
L̃
(T)
i +

lnn

η
.

Proof. The proof is similar to the proof of Theorem 35 above. We again use the weights and
relate them to (a) the normalized cost on the left-hand side and (b) every L̃

(T)
i . For step (a):

7.2. MULTI-ARMED BANDITS 97

� Consider the weight change w
(t+1)
i = w

(t)
i · e−ηℓ̃

(t)
i .

� Note that ez ≤ 1 + z + z2 for z ∈ [−1, 1], which implies

W (t+1) =
n∑

i=1

w
(t+1)
i =

n∑
i=1

w
(t)
i · e−ηℓ̃

(t)
i

≤
n∑

i=1

w
(t)
i · (1− ηℓ̃

(t)
i + (ηℓ̃

(t)
i)2) since − 1 ≤ −ηℓ̃(t)i ≤ 0

=
n∑

i=1

w
(t)
i −

n∑
i=1

w
(t)
i ηℓ̃

(t)
i +

n∑
i=1

w
(t)
i (ηℓ̃

(t)
i)2)

= W (t)

(
1− η

n∑
i=1

p
(t)
i ℓ̃

(t)
i + η2

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2

)
since wi(t) = W (t) · p(t)i .

� Repeatedly applying this equation and using W (1) = n we obtain

W (T+1) ≤ n
T∏
t=1

(
1− η

n∑
i=1

p
(t)
i ℓ̃

(t)
i + η2

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2

)
.

Now for step (b), since w
(t+1)
i = w

(t)
i · e−ηℓ̃

(t)
i , we obtain recursively

W (T+1) ≥ max
i
w

(T+1)
i = max

i

(
1 ·

T∏
t=1

e−ηℓ̃
(t)
i

)
= max

i
e−η

∑T
t=1 ℓ̃

(t)
i = e−ηmini L̃

(T)
i .

Applying the bounds on W (T+1) we see

e−ηmini L̃
(T)
i ≤ W (T+1) ≤ n

T∏
t=1

(
1− η

n∑
i=1

p
(t)
i ℓ̃

(t)
i + η2

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2

)
and apply a logarithm on both sides

−ηmin
i
L̃
(T)
i ≤ lnn+

T∑
t=1

ln

(
1− η

n∑
i=1

p
(t)
i ℓ̃

(t)
i + η2

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2

)
.

Using ln(1 + z) ≤ z for all z > −1, we can further increase the right-hand side to obtain

−ηmin
i
L̃
(T)
i ≤ lnn+

T∑
t=1

(
−η

n∑
i=1

p
(t)
i ℓ̃

(t)
i + η2

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2

)
.

Dividing both sides by η and rearraging the terms yields the statement of the lemma.

Using the lemma, we can now start to prove the main theorem.

Proof of Theorem 36. Let us first fix the behavior of the algorithm and consider what hap-
pens for each set of possible costs and coin flips by the algorithm

98 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

� We fix the cost vectors ℓ(1), . . . , ℓ(T).
� Let us also fix the random choices of experts by the algrithm I1, . . . , IT .
� This fixes all normalized cost vectors ℓ̃(1), . . . , ℓ̃(T).
� Ultimately, this also fixes all vectors p(1), . . . , p(T) and q(1), . . . , q(T).
� Having fixed all these values, we see
T∑
t=1

n∑
i=1

qi(t)ℓ̃
(t)
i =

T∑
t=1

n∑
i=1

(
(1− γ)p(t)i +

γ

n

)
· ℓ̃(t)i

= (1− γ)
T∑
t=1

n∑
i=1

p
(t)
i ℓ̃

(t)
i +

γ

n

T∑
t=1

n∑
i=1

ℓ̃
(t)
i

≤ (1− γ)

(
min

i
L̃
(T)
i +

lnn

η
+ η

T∑
t=1

n∑
i=1

p
(t)
i (ℓ̃

(t)
i)2

)
+
γ

n

T∑
t=1

n∑
i=1

ℓ̃
(t)
i

≤ min
i
L̃
(T)
i +

lnn

η
+ η

T∑
t=1

n∑
i=1

q
(t)
i (ℓ̃

(t)
i)2 +

γ

n

T∑
t=1

n∑
i=1

ℓ̃
(t)
i ,

(7.2)

where in the first inequality follows from the lemma above.

Now let us bring back some of the randomness to relate the costs ℓ
(t)
i and ℓ̃

(t)
i . Keeping all

costs ℓ(t) fixed, we only fix the choices I1, . . . , It−1 before round t. In round t, for every i ∈ [n]

E
[
ℓ̃
(t)
i | I1, . . . , It−1

]
= Pr[It = i | I1, . . . , It−1] ·

ℓ
(t)
i

q
(t)
i

+ Pr[It ̸= i | I1, . . . , It−1] · 0

= q
(t)
i ·

ℓ
(t)
i

q
(t)
i

+ 0 = ℓ
(t)
i .

As this is independent of I1, . . . , It−1, we can directly bound the unconditional expectation

E

∑
i∈[n]

q
(t)
i ℓ̃

(t)
i

 =
∑
i∈[n]

E
[
q
(t)
i ℓ̃

(t)
i

]
=
∑
i∈[n]

E
[
q
(t)
i

]
ℓ
(t)
i = E

[
ℓ
(t)
It

]
= ℓ

(t)
Exp3.

As such, the expectation of the left-hand side of (7.2) is exactly the expected cost L
(T)
Exp3 of

the algorithm.

Now for the last right-hand side of (7.2) we have to bound the quadratic terms. Fixing the
choices I1, . . . , It−1 before round t arbitrarily, we see

E
[
(ℓ̃

(t)
i)2 | I1, . . . , It−1

]
= q

(t)
i ·

(
ℓ
(t)
i

q
(t)
i

)2

+ 0 =
(ℓ

(t)
i)2

q
(t)
i

.

Since the expression has q
(t)
i in the denominator, it is not independent of I1, . . . , It−1. How-

ever, we see that

E

∑
i∈[n]

q
(t)
i (ℓ̃

(t)
i)2

∣∣∣∣∣∣ I1, . . . , It−1

 =
∑
i∈[n]

q
(t)
i ·

(ℓ
(t)
i)2

q
(t)
i

=
∑
i∈[n]

(ℓ
(t)
i)2

7.3. ONLINE CONVEX OPTIMIZATION 99

is independent of I1, . . . , It−1 and, thus, also applies to the unconditional expectation

E

∑
i∈[n]

q
(t)
i (ℓ̃

(t)
i)2

 =
∑
i∈[n]

(ℓ
(t)
i)2 .

Overall, using random I1, . . . , IT , the expectation over equation (7.2) is

T∑
t=1

n∑
i=1

E
[
qi(t)ℓ̃

(t)
i

]
≤ E

[
min

i
L̃
(T)
i

]
+

lnn

η
+ η

T∑
t=1

n∑
i=1

E
[
q
(t)
i (ℓ̃

(t)
i)2

]
+
γ

n

T∑
t=1

n∑
i=1

E[ℓ̃(t)i].

Replacing the terms using the observations above yields

L
(T)
Exp3 ≤ min

i
L
(T)
i +

lnn

η
+ η

T∑
t=1

n∑
i=1

(ℓ
(t)
i)2 +

γ

n

T∑
t=1

n∑
i=1

ℓ
(t)
i .

Finally, since ℓ
(t)
i ∈ [0, 1], the two double sums are upper bounded by nT . This is not overly

costly when η and γ/n are sufficiently small (but not too small, since then (lnn)/η becomes
large). Hence,

L
(T)
Exp3 ≤ min

i
L
(T)
i +

lnn

η
+ nT · (η + γ/n),

which proves the theorem.

7.3 Online Convex Optimization

In the previous section, we considered problems with a finite set of experts. In many prob-
lems, however, the set of possible alternatives is infinite, in which case the algorithms above
cannot be directly applied. In this section, we will consider problems in which experts are
numerical vectors from a convex set, and costs are given by convex functions.

Online Convex Optimization is an experts problem with infinitely many experts:
� Experts are vectors in a convex and compact set D ⊂ Rd

� Every round t = 1, . . . , T we pick a point w(t) ∈ D
� Then we see a convex cost function ct : D → R and incur cost ct(w

(t)).
� Goal: Pick w(t) to minimize total cost

∑T
t=1 ct(w(t)).

� We again evaluate our performance using a notion of regret

Regret(T) =
T∑
t=1

ct(w
(t))−min

v∈D

T∑
t=1

ct(v) .

Example 11. Consider a set of data points (x1, y1), . . . , (xT , yT) in two-dimensional space.
We look for a linear regression, i.e., a line w1x+w2 that minimizes the sum of squared error∑

t(w1xt+w2−yt)2. The set of possible choices (“experts”) is given by all pairs (w1, w2) ∈ R2.

100 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

Consider an online variant where points arrive one by one. Upon seeing xt, we have to
predict yt by choosing a linear function with parameters (w

(t)
1 , w

(t)
2). Then yt is revealed,

which implies the squared-error cost

ct(w
(t)
1 , w

(t)
2) = (w

(t)
1 xt + w

(t)
2 − yt)2 .

The cost is convex and differentiable in the arguments. The best line in hindsight is just the
optimal regression. ■

7.3.1 Generalized Infinitesimal Gradient Ascent

In this section, we will assume that the functions ct are differentiable and we also learn
the gradient. This is not really necessary, but it simplifies the analysis a lot. The gradient
at a point w ∈ Rd is the vector ∇c(w) ∈ Rd of partial derivatives ∂c

∂xi
. For example, for the

regression above,

∇ct(w1, w2) =

(
2x2tw1 + 2xtw2 − 2xtyt
2xtw1 + w2 − yt

)
. (7.3)

To gain some intuition for the algorithm, consider minimizing a single convex function c.

� We can use gradient descent – start at any point w(1) ∈ Rd and make steps in the
direction of steepest descent

w(t+1) = w(t) − η∇c(w(t)) ,

with sufficiently small step size η ∈ R. We “sink into the valley” of the convex function
and arrive close to (depending on η) the global minimum.

� Gradient descent to minimize c over a convex subspace D can lead us outside D.
When this happens, we use a projection P : Rd → D that finds for any w ∈ Rd the
point P (w) ∈ D closest to w.

� Using projected gradient updates

w(t+1) = P (w(t) − η∇c(w(t))) ,

the convexity of D ensures that we “circle around the border” of D to sink towards
the minimum of c within D.

For the online scenario with changing functions, we use the generalized infinitesimal
gradient ascent1 (GIGA) algorithm:

Pick w(1) ∈ D arbitrary and w(t+1) = P (w(t) − η · ∇ct(w(t))) .

It uses the gradient for ct to optimize for ct+1. This seems like a stupid idea, as ct+1 can be
completely different from ct. Nevertheless, it turns out that this algorithm has small regret,
at least if diameter of D and steepness of functions ct are bounded independent of T .

1Ascent stems from the equivalent formulation of the scenario as online concave maximiziation.

7.3. ONLINE CONVEX OPTIMIZATION 101

Theorem 37. Let G ≥ ∥∇ct(w)∥2 and ∆ ≥ ∥v −w∥2 for all v,w ∈ D. GIGA experiences
a regret of at most

∆2

2η
+
TηG2

2
.

Corollary 5. Using η = ∆/(G
√
T), the regret of GIGA is bounded by ∆G

√
T . If ∆ and G

are independent of T , GIGA is a no-regret algorithm.

Intuitively, projected gradient descent works if all cost functions ct are similar. If functions
are highly different, the algorithm can get high cost, but then the optimum w∗ ∈ D must
have high cost, too. We use a potential function argument to capture this intuition:

� W.l.o.g. label optimum as origin w∗ = 0 of the coordinate system.
� Consider “potential” as Φt =

1
2η
∥w(t)∥22.

� Φt measures distance of w(t) to w∗ = 0

Our first lemma expresses a trade-off. Either the cost in a round is close to optimal, or the
next vector w(t+1) is closer to w∗ than w(t).

Lemma 24. ct(w(t))− ct(0) + Φt+1 − Φt ≤ η ·G2/2

Proof. Note that ∥P (v)∥2 ≤ ∥v∥2, because D is convex and the projection always moves v
towards D and, thus, the origin w∗ = 0 ∈ D. Now we see

Φt+1 − Φt

=
1

2η
(∥w(t+1)∥22 − ∥w(t)∥22)

≤ 1

2η
(∥w(t) − η∇ct(w(t))∥22 − ∥w(t)∥22) since ∥P (w)∥2 ≤ ∥w∥2

=
1

2η
(∥w(t)∥22 + η2∥∇ct(w(t))∥22 − 2⟨η∇ct(w(t)),w(t)⟩ − ∥w(t)∥22) vector law of cosines

≤ 1

2
ηG2 − ⟨∇ct(w(t)),w(t)⟩ . by definition of G

The vector law of cosines is a vector version of the first binomial formula

∥v +w∥22 = ∥v∥22 + ∥w∥22 + 2⟨v,w⟩

where ⟨·, ·⟩ denotes the inner product given by ⟨x,y⟩ =
∑d

i=1 xiyi.

Convexity means a function always stays above its’ tangents. For a one-dimensional convex
function, we can easily see

f(v) ≥ f(w) + f ′(w) · (v − w),

and the analogous observation holds for our convex cost functions in multiple dimensions

ct(v) ≥ ct(w
(t)) + ⟨∇ct(w(t)), (v −w(t))⟩ .

Using v = w∗ = 0 and rearranging terms

⟨∇ct(w(t)), (0−w(t))⟩ ≤ ct(0)− ct(w(t))

102 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

and we see

Φt+1 − Φt ≤
1

2
ηG2 − ⟨∇ct(w(t)),w(t)⟩ ≤ ηG2/2 + ct(0)− ct(w(t)) ,

which proves the lemma.

Proof of Theorem 37. Summing up from t = 1, . . . , T , we get a telescopic sum and the lemma
yields

T∑
t=1

(ct(w
(t))− ct(0) + Φt+1 − Φt) = ΦT+1 − Φ1 +

T∑
t=1

(ct(w
(t))− ct(0)) ≤ T · ηG2/2 .

Note that, by definition, ∆2

2η
≥ Φt ≥ 0, so the regret

T∑
t=1

ct(w
(t))−min

v∈D

T∑
t=1

ct(v)) =
T∑
t=1

ct(w
(t))− ct(0) ≤ Φ1 − ΦT+1 +

TηG2

2

≤ ∆2

2η
+
TηG2

2

7.3.2 Follow-the-Regularized-Leader

A related approach to the problem is to Follow The Leader (FTL), i.e., in each round we
pick w(t) ∈ D as the vector that has experienced smallest total cost in rounds 1, . . . , t − 1.
Unfortunately, this strategy can be tricked very easily in the adversarial setting, by simply
givingw(t) a very high cost in the next round. FTL can become very unstable and alternating
in its’ choices. It can guarantee only a high cost, since it might be “always too late”.

Intuitively, one would want a more gentle adaptation, which nevertheless manages to identify
good choices rapidly over time (whenever they exist). For this we add a regularization term
defined by a function R : D → R – a bit of “noise”, or a hypothetical round 0 with additional
cost. It is added when we compute the best choice so far. Carefully chosen regularization
terms can indeed stabilize FTL and eventually turn it into a no-regret algorithm.

Follow-The-Regularized-Leader (FTRL) picks in each round t a vector w(t) that minimizes
the cost R(w) +

∑t−1
t′=1 ct′(w). For simplicity of exposition we use c0(w) = R(w). The next

lemma bounds the regret in terms of ct(w
(t))−ct(wt+1). The regret is governed by the points

chosen in rounds t and t+ 1 and their cost difference measured in round t, for all t ≥ 1.

Lemma 25. The regret of FTRL is upper bounded by

max
v∈D

R(v)−R(w(1)) +
T∑
t=1

(ct(w
(t))− ct(w(t+1))) .

7.3. ONLINE CONVEX OPTIMIZATION 103

Proof. We use the interpretation that R(w) = c0(w). First, we show by induction on T that

min
v∈D

T∑
t=0

ct(v) ≥
T∑
t=0

ct(w
(t+1)).

This is trivial for T = −1. Suppose the statement holds for T − 1. Then

T−1∑
t=0

ct(w
(T+1)) ≥ min

v∈D

T−1∑
t=0

ct(v) ≥
T−1∑
t=0

ct(w
(t+1))

where the second inequality is our hypothesis. Now add cT (w
(T+1)) on both sides,

T∑
t=0

ct(w
(T+1)) ≥

T∑
t=0

ct(w
(t+1))

and note that FTRL picks w(T+1) as the vector that minimizes the total cost
∑T

t=0 ct(w
(T+1))

of all previous rounds. Hence,

T∑
t=0

ct(w
(T+1)) = min

v∈D

T∑
t=0

ct(v) ≥
T∑
t=0

ct(w
(t+1))

is proved.

Now using the above inequality, we see that

T∑
t=0

ct(w
t)−min

v∈D

T∑
t=0

ct(v) ≤
T∑
t=0

ct(w
t)−

T∑
t=0

ct(w
(t+1)).

Due to the minimum, the bound holds also for every fixed vector v ∈ D. Replacing c0 by R,

R(w(0))−R(v) +
T∑
t=1

ct(w
t)−

T∑
t=1

ct(v) ≤ R(w(0))−R(w(1)) +
T∑
t=1

ct(w
t)−

T∑
t=1

ct(w
(t+1)).

for any v ∈ D. Again, noting that the bound holds for all v ∈ D, rearranging gives the
desired upper bound on the regret

T∑
t=1

ct(w
(t))−min

v∈D

T∑
t=1

ct(v) = max
v∈D

T∑
t=1

(ct(w
(t))− ct(v))

≤ max
v∈D

R(v)−R(w(1)) +
T∑
t=1

(ct(w
(t))− ct(wt+1)).

104 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

The bound depends on the change of the vectors w(t) and w(t+1), both measured in terms
of cost ct. The behavior of FTRL is governed by the best choices so far. If that choice
changes frequently, then ct(w

t)− ct(wt+1) can become large, and FTRL tends to suffer from
a large regret. Here the terms R(v) come to the rescue – they ensure that FTRL changes
only when the improvement in terms of cost is substantial. While this increases the regret by
at most maxv∈D R(v), it also leads to more stable behavior and less regret over the rounds.

Example 12. Consider the convex space D = {w |
∑d

i=1wi = 1, wi ∈ [0, 1] for all i ∈ [d]}.
Suppose in each round, we get a linear cost function based on a vector ℓ(t) ∈ [0, 1]d

ct(w) =
d∑

i=1

wi · ℓ(t)i .

This is exactly the Experts problem! The vector w is a probability distribution over ex-
perts, and ct(w) is the expected cost. As such, online convex optimization is a generalization
of the Experts problem. ■

Example 13. Popular choices for the regularizer R(v) are the Euclidean regularizer

R(v) =
1

2η

d∑
i=1

v2i

or the Entropical regularizer

R(v) =
1

η

d∑
i=1

vi ln vi.

η > 0 is a scaling factor – smaller η ⇒ larger impact of regularization in the algorithm.

In the Experts problem (c.f. Example 12), it can be shown that Entropical regulariza-

tion results in w(t) being proportional to e−ηL
(t−1)
i . FTRL becomes a version of the RWM

algorithm. ■

To obtain a non-trivial upper bound on the regret of FTRL, we make two further assump-
tions. The first assumption is on the cost functions ct.

� We consider a norm ∥ · ∥ that assigns each point in D a “length”.
� Typical examples are the ℓp-norms, for p ∈ {1, 2, . . .}

∥w∥p = p

√√√√ d∑
i=1

|wi|p.

� Based on a norm, we assume all costs ct satisfy a Lipschitz condition. Formally, for
all vectors v,w ∈ D

ct(v)− ct(w) ≤ L · ∥v −w∥ .

The second assumption is on the regularization function.

7.3. ONLINE CONVEX OPTIMIZATION 105

� Assume R(v) is differentiable (mostly for simplicity of exposition) and σ-strongly
convex:

R(v) ≥ R(w) + ⟨∇R(w),v −w⟩+ σ

2
∥v −w∥2 .

� For a strongly convex function, every tangent hyperplane meets the function in exactly
one point. Intuitively, the function is always “curved” and “superlinear”.

� If c1, . . . , cT are convex and R is strongly convex, then R+
∑

t′<t ct′ is strongly convex,
for every t′ ∈ {1, . . . , T}.

� Hence, if R is strongly convex, then FTRL chooses the “regularized leader” in every
round by optimizing a strongly convex function.

Example 12 (continued). Recall the Experts problem. For the ℓ1 norm

ct(v)− ct(w) =
∑
i∈[n]

ℓ
(t)
i · (vi − wi) ≤

∑
i∈[n]

1 · |vi − wi| = 1 · ∥v −w∥1

and the Lipschitz condition is satisfied with L = 1. More generally, if all costs are from
ℓ
(t)
i ∈ [0, ρ], then L = ρ is sufficient.

For the ℓ2 norm, L =
√
n is sufficient:

ct(v)− ct(w) ≤
∑
i∈[n]

|vi − wi| ≤
√
n ·
√∑

i∈[n]

|vi − wi|2 =
√
n∥v −w∥2 .

■

Example 14. The Euclidean regularizer is 1
η
-strongly convex with the ℓ2 norm. To see this,

note that the partial derivative is (∇R(w))i =
∂R
∂wi

= wi/η and, hence,

⟨∇R(w),v −w⟩ =
d∑

i=1

wi

η
· (vi − wi) =

1

η

d∑
i=1

wi(vi − wi).

Thus, overall

⟨∇R(w),v −w⟩+ 1

2η
∥v −w∥22 =

1

η

d∑
i=1

wi(vi − wi) +
1

2η

d∑
i=1

(vi − wi)
2

=
1

2η

d∑
i=1

v2i −
1

2η

d∑
i=1

w2
i

= R(v)−R(w). ■

Suppose the Lipschitz condition and σ-strong convexity of the regularizer hold with respect
to the same norm. For this case, we obtain the main result of this section.

Theorem 38. If the regularizer R is σ-strongly convex and each ct fulfills the Lipschitz
condition with parameter L, the regret of FTRL is bounded by

max
v∈D

R(v)−R(w(1)) + T · L
2

σ
.

106 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

To prove the theorem, we first show a property of strongly convex functions.

Lemma 26. Let F : D → R be a σ-strongly convex differentiable function over D with
respect to a norm ∥ · ∥. Let w ∈ argminv∈D F (v). Then, for all v ∈ D

F (v)− F (w) ≥ σ

2
∥v −w∥2 .

Proof. Suppose w is in the interior of D.
� Gradient of F (w) must be zero in every component – it is a local minimum,∇F (w) = 0.
� By strong convexity, for all v ∈ D

F (v)− F (w) ≥ ⟨∇F (w),v −w⟩+ σ

2
∥v −w∥2 = σ

2
∥v −w∥2 .

Suppose w is not in the interior of D. Then ⟨∇F (w),v −w⟩ ≥ 0, since otherwise moving
from w slightly to v would decrease F .

Proof of Theorem 38. We prove the theorem by showing that ct(w
(t)) − ct(w(t+1)) ≤ L2/σ

for all t ∈ [1, T]. The theorem then follows using Lemma 25.
� For all t ≥ 1, let Ft(v) = R(v)+

∑t−1
t′=1 ct′(v). R strongly convex⇒ Ft strongly convex.

� w(t) is a vector that minimizes Ft. Therefore, by Lemma 26

σ

2
∥w(t+1) −w(t)∥2 ≤ Ft(w

(t+1))− Ft(w
(t)) .

� Apply the same bound to Ft+1, which is minimized at w(t+1)

σ

2
∥w(t) −w(t+1)∥2 ≤ Ft+1(w

(t))− Ft+1(w
(t+1)) .

� We sum up these inequalities

σ · ∥w(t) −w(t+1)∥2 ≤ (Ft(w
(t+1))− Ft(w

(t))) + (Ft+1(w
(t))− Ft+1(w

(t+1))) ,

apply definition of Ft and Ft+1, and consider the Lipschitz condition to obtain

σ · ∥w(t) −w(t+1)∥2 ≤ ct(w
(t))− ct(w(t+1)) ≤ L · ∥w(t) −w(t+1)∥ .

� This implies

∥w(t) −w(t+1)∥ ≤ L

σ

and, thus,

ct(w
(t))− ct(w(t+1)) ≤ L2

σ
.

Applying this bound in Lemma 25 proves the theorem.

Example 15. Recall that FTRL with the Entropical regularizer R(v) = 1
η

∑n
i=1 vi ln vi in

the Experts problem yields a variant of the RWM algorithm (c.f. Example 13).
� One can show that the Entropical regularizer is 1/η-strongly convex w.r.t. the ℓ1-norm.
� Also, −(lnn)/η ≤ R(w) ≤ 0.

7.3. ONLINE CONVEX OPTIMIZATION 107

� Observed above: Lipschitz condition holds for the ℓ1 norm and L = 1.
� Hence, Theorem 38 yields a regret at most (lnn)/η + Tη.

� Setting η =
√

lnn
T
, the bound becomes 2

√
T lnn, exactly the one shown in Theorem 35.

■

Example 16. Consider FTRL with Euclidean regularizer R(v) = 1
2η

∑n
i=1 v

2
i in the Ex-

perts problem.

� Recall that the Euclidean regularizer is 1
η
-strongly convex for the ℓ2 norm, i.e., σ = 1/η.

� Also, 0 < R(v) ≤ 1
2η
.

� Observed above: the Lipschitz condition holds for the ℓ2-norm and L =
√
n.

� Hence, Theorem 38 yields a regret at most 1/(2η) + Tnη.
� Setting η = 1/

√
2nT , the bound becomes

√
2nT .

FTRL with Euclidean regularizer is also a no-regret algorithm for the Experts problem. ■

A disadvantage might be that FTRL requires to solve a potentially complicated problem:
Find the best vector w for the sum of costs of all previous rounds. However, in many cases
this choice is much simpler than it sounds.

Example 16 (continued and generalized). We consider D = Rd with linear functions

ct(w) =
d∑

i=1

ℓ
(t)
i wi .

This scenario contains the Experts problem as (very) special case. Consider FTRL with
Euclidean regularizer.

� We need to find w(t+1) so as to minimize

t∑
t′=1

d∑
i=1

ℓ
(t′)
i wi +

1

2η

d∑
i=1

w2
i .

� The partial derivative by wi is
t∑

t′=1

ℓ
(t′)
i +

1

η
wi .

� For a minimum, w
(t+1)
i has bring this partial derivative to zero: w

(t+1)
i = −η

∑t
t′=1 ℓ

(t′)
i .

Overall w(t+1) = −η
∑t

t′=1 ℓ
(t′).

� Applying this property recursively, we see

w(t+1) = w(t) − ηℓ(t) = w(t) − η∇ct(w(t)) for every w(t).

� Hence, we obtain w(t+1) from w(t) by going a step of size η with the gradient.

⇒ FTRL becomes the GIGA algorithm! ■

108 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

7.4 Zero-Sum Games

We consider a two-player zero-sum games. These are competitive optimization scenarios
with two agents I and II.

� I has k strategies, II has ℓ strategies. Every pair (i, j) ∈ [k]× [ℓ] is a state.
� Each state has cost aij ∈ R to agent I. Cost to II is −aij, so sum of costs is always 0.
� We think of a matrix A = (aij) ∈ Rk×ℓ, where I picks a row and II a column.
� I wants to pick a row to minimize his cost.
� II wants to pick a column to maximize cost of I.
� Both I and II can play randomized strategies: I chooses a distribution x over the
k rows, II chooses a distribution y over the ℓ columns.

Given choices x and y, it is easy to see that the expected cost for I (= profit for II) is∑
i∈[k]

∑
j∈[ℓ]

xiyj · aij = xTAy .

Example 17. A popular example is the Rock-Paper-Scissors game. Here both players
simultaneously choose from {R,P, S}. The cost becomes

R P S

R 0 −1 1

P 1 0 −1

S 0 1 0

where cost -1 implies that I wins, 1 that I loses, and 0 indicates a draw. What are the
distributions x and y that the players would choose here? ■

More fundamentally, whenever an agent optimizes against an adversary, a two-player zero-
sum game arises. Notably, worst-case analysis of algorithms for a problem P can be inter-
preted as such a game. Consider, e.g., online optimization discussed earlier in this course:

� As a designer (player I), we want to choose an algorithm for P that minimizes the
competitive ratio.

� To show that the guarantee holds for all instances, we can imagine a malicious adversary
(player II) who tries to construct an instance of P to make the ratio of the chosen
algorithm as large as possible.

� Here the strategies of I are deterministic algorithms, and a randomized strategy cor-
responds to a randomized algorithm.

� The randomized strategies of player II are all distributions over instances of P .

Consider two sequential versions of this game:
(a) First player I publicly announces x. Then II can answer with the best y.

Here I minimizes his cost taking into account the best response of II. The optimal
expected cost of I becomes

min
x

(
max

y
x⊤Ay

)

7.4. ZERO-SUM GAMES 109

(b) First player II publicly announces y. Then II can answer with the best x.

Here II maximizes the cost of I taking into account the best response of I. The optimal
expected cost of I becomes

max
y

(
min
x

x⊤Ay
)

Example 18. Consider a game given by the following matrix

A =

 0 2 4

1 0 −1


In version (a):

� I could announce (1, 0) or (0, 1) which after best response by II would result in cost
4 or 1, respectively.

� The best choice is x∗ = (1
3
, 2
3
), since then the expected cost of every column is x2 =

2x1 = 4x1 − x2 = 2
3
. Hence, the expected cost of I is 2

3
.

In version (b):
� II could announce (1, 0, 0), (0, 1, 0) or (0, 0, 1) which after best response by II would
result in cost 0, 0, or -1 for I, respectively.

� The best choice is any vector y∗ = (2
3
+ y3,

1
3
− 2y3, y3) with y3 ∈ [0, 1

6
]. Then the

expected cost of both rows is 2y2 + 4y3 = y1 − y3 = 2
3
. Expected cost of I is again 2

3
.
■

The example looks peculiar – intuitively, we would expect that version (b) is better for I,
since he can tailor his answer towards an optimal choice in hindsight. However, the famous
Minimax-Theorem shows that, when being played optimally by both players, both variants
yield the same expected cost for I (and, hence, also for II).

Theorem 39 (Minimax-Theorem). In every two-player zero-sum game

min
x

(
max

y
x⊤Ay

)
= max

y

(
min
x

x⊤Ay
)
.

Recall the interpretation of online optimization as a game. Using this interpretation, it is
easy to see that the Minimax-Theorem implies Yao’s Principle (Theorem 14).

We will prove the Minimax-Theorem using no-regret learning!

Proof. We first simplify the cost matrix A:
� Subtract a− = mini,j aij from every entry of A. Then A ∈ [0, ρ]k×ℓ for some ρ ≥ 0.
� This changes the expected cost x⊤Ay of I by exactly a− for every x and y.
� The simplification has no effect on the statement of the theorem.

Consider a repeated version of the game, where in each round t = 1, . . . , T the same game is
played in version (a), i.e., I always moves first. We interpret this as an instance of Online
Convex Optimization:

� D = {x |
∑k

i=1 xi = 1, xi ∈ [0, 1] for all i ∈ [k]}, i.e., all randomized strategies of I.

110 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

� For each x(t) ∈ D, the cost becomes

ct(x
(t)) = c(x(t),y(t)) = (x(t))⊤A(y(t)),

for a best response y(t) of II against x(t).
� This is the Experts problem, where each expert is a row i ∈ [k] and experiences cost

ℓ
(t)
i =

∑
j∈[ℓ] aijy

(t)
j ∈ [0, ρ].

� Recall Example 12: ct satisfies the Lipschitz condition with L = ρ for the ℓ1-norm.
Entropical regularizer is 1/η-strongly convex w.r.t. ℓ1-norm.

� Hence, if I uses FTRL with Entropical regularizer and η = Θ(1/
√
T) to make his

strategy choices x(t) ∈ D, then Theorem 38 implies for the regret

Regret(T) =
T∑
t=1

c(x(t),y(t))−min
x∈D

T∑
t=1

c(x,y(t)) ≤ lnn

η
+ Tρ2η = ε(T) ∈ o(T).

For the cost of I in round t we observe that, since II plays a best response,

c(x(t),y(t)) = max
y

(x(t))⊤Ay ≥ min
x

(
max

y
x⊤Ay

)
.

Consider the average cost of any fixed x in hindsight. By linearity, this is the same as in a
single-round game if II would always play an average history ȳ:

min
x∈D

T∑
t=1

c(x,y(t)) = min
x∈D

T∑
t=1

∑
i∈[k]

∑
j∈[ℓ]

xiaijy
(t)
j = min

x∈D
T
∑
i∈[k]

∑
j∈[ℓ]

xiaij

T∑
t=1

y
(t)
j

T
= T min

x∈D
x⊤Aȳ

But this is version (b) of the problem: II first specifies ȳ and then I minimizes by choosing
x based on it! Hence, we have that

min
x

x⊤Aȳ ≤ max
y

(
min
x

x⊤Ay
)
.

Overall,

min
x

(
max

y
x⊤Ay

)
−max

y

(
min
x

x⊤Ay
)
≤ 1

T
· Regret(T) ≤ ε(T)

T
∈ o(1).

Hence, since there is no dependence on T in the first terms, growing T →∞ implies

min
x

(
max

y
x⊤Aȳ

)
≤ max

y

(
min
x

x⊤Ay
)
.

For the proof of the other direction

min
x

(
max

y
x⊤Ay

)
≥ max

y

(
min
x

x⊤Ay
)

7.4. ZERO-SUM GAMES 111

we define a pair of optimal strategies

x∗ ∈ argmin
x

(
max

y
x⊤Ay

)
y∗ ∈ argmax

y

(
min
x

x⊤Ay
)

and observe

min
x

(
max

y
x⊤Ay

)
= max

y
(x∗)⊤Ay

≥ (x∗)⊤Ay∗

≥ min
x

x⊤Ay∗

= max
y

(
min
x

x⊤Ay
)
.

(7.4)

Due to the other direction proved above, all inequalities in (7.4) must hold with equality,
for any pair of optimal strategies x∗ and y∗. If I plays x∗, then y∗ is a best response for
II. Similarly, if II plays y∗, then x∗ must be a best response for I. Hence, any pair of
optimal strategies is a so-called Nash equilibrium of the game, a collection of mutual best
responses.

112 CHAPTER 7. ADVERSARIAL NO-REGRET LEARNING

Appendix A

Stochastic Concepts and Tools

A.1 Distributions, Conditional and Independent Events

Definition 1. Let Ω be a finite or countably infinite set (the sample space). A probability
distribution D over Ω is given by a function

PrD : Ω→ [0, 1] such that
∑
ω∈Ω

PrD[ω] = 1.

An element ω is called an elementary event, a subset A ⊂ Ω is called an event. We use the
notation

PrD[A] =
∑
ω∈A

PrD[ω]

We often drop the subscript D when clear from context.

Consider, e.g., outcomes in roulette.
� Elementary events are colors Ω = {black, red, green}.
� Pr[black] = 18/37, Pr[red] = 18/37, Pr[green] = 1/37.
� Elementary events are not always uniformly distributed – if so, we say that we have a
uniform distribution.

� For the same experiment we can define different elementary events, e.g., we could also
choose the numbers Ω′ = {0, . . . , 36}. Then we would have a uniform distribution.

Consider two events A and B.
� What is the probability that both happen simultaneously?
� What is the probability that at least one of them happens?
� Clearly: Pr[A ∧B] = Pr[A ∩B] and Pr[A ∨B] = Pr[A ∪B].
� We use logical operators “and” (∧) and “or” (∨) instead of the intersection of sets.
� Similarly as for sets, we have Pr[A ∨B] = Pr[A] + Pr[B]− Pr[A ∧B].

When is Pr[A ∨B] = Pr[A] + Pr[B]? Only if A ∩B = ∅, i.e., no overlap in the events.

Is it always true that Pr[A ∧B] = Pr[A] · Pr[B]? No! However, this condition is important,
it characterizes independent events.

113

114 APPENDIX A. STOCHASTIC CONCEPTS AND TOOLS

Definition 2. Events A and B are called independent if and only if

Pr[A ∧B] = Pr[A] · Pr[B] .

[Pic: Events as sets of outcomes, independent events]

Consider, for exmple, two throws of a coin.
� Two events: A both coins show the same, and B the second throw is heads.
� Pr[A ∨B] = 3/4, Pr[A] = 1/2, and Pr[B] = 1/2.
� Now Pr[A ∧B] = Pr[A] + Pr[B]− Pr[A ∨B] = 1/4 = Pr[A] · Pr[B]
� The events are independent.

As another example, consider a round of roulette.
� Two events: R outcome is red, and U outcome is odd number.
� Pr[R] = 18/37 < 1/2, Pr[U] = 18/37 < 1/2 and Pr[RU] = 9/37.
� Note: Pr[R] · Pr[U] < 18/37 · 1/2 = 9/37 = Pr[R ∧ U].
� The events are not independent.

In the latter example, suppose I bet on odd numbers. Now I see that the outcome is red.
Does this information change my chances?

� Initially, I have Pr[R] = 18/37.
� Given that it must be a red number, the 0 and all black numbers have probability 0.
� Among red numbers, there are 9 odd ones out of 18 ones in total.
� Thus, the conditional probability that there is an outcome from U given that the
outcome is from R is Pr[U | R] = 9/18 > 18/37.

Definition 3. Pr[U | R] is called the conditional probability of event U w.r.t. event R.

[Pic: conditional events, conditional probability]

How do we determine a conditional probability? The set of outcomes shrinks to the ones
from R. Thus, we need the probability of outcomes from R ∧ U and normalize it with the
one from R. More formally,

Pr[U | R] = Pr[U ∧R]
Pr[R]

.

Consider this for two independent events:

Pr[A | B] =
Pr[A ∧B]

Pr[B]
=

Pr[A] · Pr[B]

Pr[B]
= Pr[A] .

Observation 1. Pr[A | B] = Pr[A] if and only if A and B are independent events.

Consider the following experiment.
� We throw a dice two times.
� “≥ 10” is the event that the numbers sum to at least 10.
� “First = x” is the event that the first throw shows the number x, where x = 1, . . . , 6.

A.2. RANDOM VARIABLES, EXPECTATION, CONCENTRATION 115

We can formulate the Pr[≥ 10] by exploring all possibilities for First:

Pr[≥ 10] = Pr[≥ 10 ∧ First = 1] + Pr[≥ 10 ∧ First = 2] + . . .+ Pr[≥ 10 ∧ First = 6]

= Pr[First = 1] · Pr[≥ 10 | First = 1] + Pr[First = 2] · Pr[≥ 10 | First = 2]

+ . . .+ Pr[First = 6] · Pr[≥ 10 | First = 6]

= 0 + 0 + 0 +
1

36
+

2

36
+

3

36
=

6

36

Why does this hold? The main property is that the collection of “First” events are mutually
disjoint and cover the whole sample space of possible outcomes.

[Pic: Partition of sample space, event sliced up by partition]

Definition 4. Suppose events B1 . . . , Bk are a partition of the sample space, i.e., Bi∩Bj = ∅
if i ̸= j and

⋃
iBi = Ω. Then the law of total probability states that for every event A ⊆ Ω

Pr[A] =
k∑

i=1

Pr[Bi] · Pr[A | Bi].

Note that we used this formula, e.g., in the proof of Theorem 7. The events At (best
person arrives in round t) are mututally disjoint events that cover the whole range of possible
outcomes. As such the probability of accepting the best person could be experssed as

n∑
t=s+1

Pr[At] · Pr[R(1,t−1) | At].

A.2 Random Variables, Expectation, Concentration

The value of the outcome of an experiment is expressed using random variables.
� Suppose you earn 9e if the sum of numbers in two throws of a dice is ≥ 10.
� However, we must pay 1.5e when the sum is < 10.
� Should we play this game?
� The number of interest here is the expectation or expected value, which is also the
average reward when the game is repeated very often.

� Recall Pr[≥ 10] = 6/36 = 1/6, so Pr[< 10] = 5/6.
� Hence, the expected reward is 9 · 1

6
− 1.5 · 5

6
= 1

4
.

� Indeed, in the long run it pays off to play the game.

To express this scenario more formally, we use a random variable X for the assignment of
payoffs (9 or -1.5e) to the set of elementary events of the experiment, and the expected value
of X to express the average reward weighted by the probabilities of the elementary events.

Definition 5. A random variable is a function X : Ω→ R.

An important class of random variables are indicator variables.

116 APPENDIX A. STOCHASTIC CONCEPTS AND TOOLS

Definition 6. X ∈ {0, 1} is called indicator or Bernoulli variable. The variable corresponds
to event AX = {ω | X(ω) = 1} ⊆ Ω and indicates whether the event has occured or not.

Let us define the expected value.

Definition 7. The expected value E[X] of random variable X is

E[X] =
∑
ω∈Ω

X(ω) · Pr[ω] =
∑
r∈R

r · Pr[X = r]

For an indicator variable X we have E[X] =
∑

ω∈AX
1 · Pr[ω] = Pr[X = 1] = Pr[AX].

Some observations:
� X is not an event, so Pr[X] makes no sense!
� Events based on random variables have the form Pr[X = 0], Pr[X ≥ 15], Pr[X >
3 ∧X ̸= 7] etc.

� Since Ω is finite or countably inifinite, the number of possible values r such that there
is ω with X(ω) = r is also finite or countably infinite. Hence,

∑
r∈R r · Pr[X = r] is

well-defined.
� If X and Y are random variables, then X + Y , X · Y or arbitrary functions f(X) or
f(X, Y) are also random variables.

A very important property is linearity of expectation, i.e., if we apply a linear transformation
to X and Y , the expected value also changes linearly. This is a direct consequence of the
fact that the expected value is a weighted average of random values and probabilities.

Theorem 40. The expected value is a linear function. For any λ ∈ R and any two random
variables X and Y

E[X + Y] = E[X] + E[Y]

E[λ ·X] = λ · E[X]

E[X + λ] = E[X] + λ

Proof. We only prove the first statement. The other ones can be shown similarly.

E[X] + E[Y] =
∑
x∈R

x · Pr[X = x] +
∑
y∈R

y · Pr[Y = y]

=
∑
x∈R

∑
y∈R

x · Pr[X = x] · Pr[Y = y | X = x]

+
∑
y∈R

∑
x∈R

y · Pr[Y = y] · Pr[X = X | Y = y]

=
∑
x∈R

∑
y∈R

x · Pr[(X, Y) = (x, y)] +
∑
y∈R

∑
x∈R

y · Pr[(X, Y) = (x, y)]

=
∑

x∈R,y∈R

(x+ y) · Pr[(X, Y) = (x, y)]

= E[X + Y]

A.2. RANDOM VARIABLES, EXPECTATION, CONCENTRATION 117

Can we use the expectation of X to infer anything about the probability that X ≥ a or
X ≤ a for some fixed value a ∈ R? Vaguely speaking, if the expectation of X is “large”,
does this mean that X must also be “large” with “high” probability? Indeed, if the random
variable is non-negative, formally precise statements of this kind can be derived.

Theorem 41. Let X ≥ 0 be a non-negative random variable and a ≥ E[X] a number. Then
the Markov inequality holds:

Pr[X ≥ a] ≤ E[X]

a
.

Proof. A direct calculation:

E[X] =
∑
r

r · Pr[X = r]

=
∑
r≥a

r · Pr[X = r] +
∑
r<a

r · Pr[X = r]

≥
∑
r≥a

r · Pr[X = r]

≥ a ·
∑
r≥a

Pr[X = r] = a · Pr[X ≥ a]

A much stronger and very useful bound can be shown for a collection of independent Bernoulli
variables.

Theorem 42. Let X1, . . . , Xn be independent Bernoulli variables with E[Xi] = Pr[Xi = 1] =
pi, and let X =

∑n
i=1Xi. Then the following Chernoff inequalities hold:

1. For every δ > 0

Pr[X ≥ (1 + δ) · E[X]] ≤
(

eδ

(1 + δ)1+δ

)E[X]

≤ e−E[X]·δ2/3

2. For 0 < δ < 1

Pr[X ≤ (1− δ) · E[X]] ≤
(

e−δ

(1− δ)1−δ

)E[X]

≤ e−E[X]·δ2/2

For the proof, we can apply Markov inequalities to the random variable eαX for a suitably
chosen α = ln(1 + δ).

[Pic: concentration around expectation]

	Online Optimization
	Online Algorithms with Random-Order Arrival
	The Secretary Problem
	OnlineMax Problem

	Secretary Problem
	Secretary Matching
	Item Allocation in Markets

	Online Algorithms with Distributions
	Prophet Inequalities
	Independent Distributions
	IID

	Markov Decision Processes
	Optimal Policies
	Examples for Optimal Policies

	Yao's Principle
	Independent Set
	Random Graph and Worst-Case Arrival
	Worst-Case Graph and Random-Order Arrival
	Inductive Independence and Graph Sampling

	Probing and Testing
	k-Probing and Adaptivity Gap
	k-Testing
	Probing with Cost

	Recommendation
	Bayesian Persuasion
	IID Boxes
	Independent Boxes

	Delegation

	Stochastic Multi-Armed Bandits
	Infinite Markov Decision Processes
	Markovian Multi-Armed Bandits
	Stochastic Multi-Armed Bandits

	Adversarial No-Regret Learning
	Majority Algorithms and the Experts Problem
	Multi-Armed Bandits
	Online Convex Optimization
	Generalized Infinitesimal Gradient Ascent
	Follow-the-Regularized-Leader

	Zero-Sum Games

	Stochastic Concepts and Tools
	Distributions, Conditional and Independent Events
	Random Variables, Expectation, Concentration

