Theory of Distributed Systems

Winter Term 2018/2019

Prof. Dr. Martin Hoefer, Niklas Hahn

Institute of Computer Science Algorithms und Complexity

Exercise 4 Issued: 13.11.2018
Due: 20.11.2018

Exercise 4.1. ThreeColor2Matching on Trees

(4 Points)

Given a legal 3-coloring on a rooted tree, show that it is possible to find a maximal matching in time O(1).

Exercise 4.2. MST on a Ring

(4 Points)

Prove Lemma 34 from the notes:

Every distributed algorithm to compute an MST on the ring requires $\Omega(n)$ many rounds.

Exercise 4.3. Blue-Red Edges

(6 Points)

Consider a weighted graph $G=(V,E,\omega)$ with distinct edge weights. Recall the following from the lecture:

- An edge e is a red edge if there is a cycle in G and e has the highest weight on that cycle.
- An edge e is a blue edge if there is a fragment of the MST T^* such that e has minimum weight among all outgoing edges of the fragment.

Show that there cannot be a single edge that is both red and blue.

Exercise 4.4. Adaptation of Dual Greedy

(5 Points)

Consider the following variant of the Dual Greedy algorithm where the repeat-loop (lines 3-11 in the notes) is changed:

Instead of waiting for a message from every child, each node v starts sending non-eliminated edges to its parent node immediately. The node continues to send until the end of round $\hat{L}(v) + n$. If there is no eligible unsent edge, the node waits for the next round.

Show that by round t, all edges sent from a node v to its parent u in the original Dual Greedy algorithm have also been sent from v to u in this variant.

Exercise 4.5. Bonus (6* Points)

Show that there is a distributed algorithm to construct an MST on a complete graph with n vertices in $O(\log n)$ rounds.

Note that the nodes are aware of the fact that they are in a complete graph.

The assignments and further information concerning the lecture can be found at http://algo.cs.uni-frankfurt.de/lehre/tds/winter1819/tds1819.shtml

E-mail: mhoefer@cs.uni-frankfurt.de, n.hahn@em.uni-frankfurt.de