Theory of Distributed Systems

Winter Term 2021/22

Prof. Dr. Martin Hoefer Marco Schmalhofer, Giovanna Varricchio

Institute of Computer Science Algorithms und Complexity

Exercise 3 Issued: 09.11.2021 Due: 16.11.2021, 8:15h

Please submit your solution in PDF format by sending an email to {schmalhofer, varricchio}@em.uni-frankfurt.de. Make sure that your solution reaches us before 8:15 am! Solutions are discussed on Nov 19th, 10:00h - 12:00h (Zoom Meeting-ID: 963 6309 6725, same password as lecture material). Exercises with * are bonus; they count for your score but not for the sum of points.

Exercise 3.1. Anonymous Paths

 $(7 = 3 + 4 \text{ and } 3^* \text{ Points})$

Consider the synchronous CONGEST model and an anonymous path (without IDs, nodes only know their degree) with simultaneous wakeup. We say the path is *non-oriented* if nodes cannot distinguish correctly between left and right neighbor. Similarly, we say the path is *oriented* if every node can distinguish correctly between left and right neighbor.

- a) Show that there is a deterministic algorithm that 2-colors every anonymous oriented path.
- b) Show that there is no deterministic algorithm that 2-colors every anonymous non-oriented path.
- c*) Describe how to solve the problem in b) when every vertex is able to flip fair coins (every vertex can generate a random bit that equals 0 or 1 with same probability).

Exercise 3.2. Optimization and Distributed Algorithms

 $(3 \text{ and } 5^* \text{ Points})$

For each of the following two exercises you should construct a class of graphs G = (V, E) with suitable ID assignment such that the described property holds. We use n to denote the number of vertices.

- a) The size of a maximum independent set in G is $\Omega(n)$ times the one computed by MIS-Rank.
- b*) Reduce needs a number of colors that is $\Omega(n)$ times the *chromatic number* $\chi(G)$.

Exercise 3.3. Tree-coloring in O(1), and Linial's Lower Bound

(5 = 2 + 3 Points)

Consider the synchronous LOCAL model.

- a) Show that there is a $\mathcal{O}(\log n)$ -coloring algorithm which needs $\mathcal{O}(1)$ rounds on trees where every node knows its parent.
- b) Disprove the following statement:

If there exists a k-ary q-coloring function B, then there is a (k-1)-ary 2q-coloring function B'.

Hint: What would be the consequence of this statement in the proof of Linial's lower bound?

Exercise 3.4. Coloring

(6 = 3 + 3 Points)

Consider the generalization of the 6-Color algorithm from the lecture to arbitrary, bounded degree graphs. The algorithm concatenates for all $w \in \Gamma(v), w \neq v$ the strings which the 6-Color algorithm would have chosen as new color of node v if neighbor w was v's parent in the tree. This reduction step, starting with a legal K-bit coloring, yields a $\Delta \cdot (\lceil \log K \rceil + 1)$ -bit coloring. Assume that the resulting coloring has exactly this length, i.e., each of the entrys that could possibly be shorter is filled with leading zeros.

- a) Prove that the coloring obtained from this reduction step is legal.
- b) Show that the minimum number of bits that can be achieved by iterating this reduction step is of order $\Theta(\Delta \log \Delta)$, i.e., prove that there are constants c > c' > 0 such that for any length more than $c \cdot \Delta \log \Delta$ the process reduces the length and for a length $c' \cdot \Delta \log \Delta$ the process does not reduce the length.

This result is given as Theorem 7.3.8 in Peleg's book. Note that Peleg's estimate of 2Δ instead of $O(\Delta \log \Delta)$ is a bit too optimistic.